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Abstract
The simple mechanical model of an approach-and-touch con-

trol procedure is discussed. The aim is to find an appropriate
control strategy to approach the target surface, handle the con-
tact transitions and apply the desired force on the contact sur-
face. In the control loop, position and force feedback is present;
the absolute position of the target surface is only available for
the controller with limited accuracy.
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1 Introduction
It is a common task in robotics and computer-integrated man-

ufacturing to approach and get in touch with an object, and then
apply a desired contact force on the surface of the object. A
typical problem is polishing, for example; there has been a con-
siderable effort on developing advanced control strategies for
this field of application (see e.g. [1], [2], [3], [4] and [5]). This
procedure requires both position and force control, moreover, in
most of the cases a compound of those, and besides the duality
of control, mathematical description of approaching and touch-
ing an object results a piecewise discontinuous system (see e.g.
[6] and [7]).

Sensory weighting of force and position feedback is an open
problem in human motor control tasks as well. The coherence
between sensory weighting and the stiffness of the object is in-
vestigated in [8]; the authors’ assumption is that position feed-
back is weighted more in case of soft objects, while force feed-
back is weighted more in case of stiff objects. In [9], the authors
attempt to find an optimal open-loop control strategy for transi-
tioning from finger motion to static fingertip force production.

In this paper, three hypothetical phases of contact transitions
are assumed. During the first phase of rough positioning, the
manipulator is driven relatively close to the target surface. The
corresponding distance between the manipulator and the object
surface depends on a priori knowledge of the accuracy of the po-
sition detection, and it is chosen to satisfy the essential require-
ments of avoiding penetration or unwanted collision. Within this
distance, the position feedback becomes unreliable and the con-
trol strategy has to be changed for the second phase of contact
transition: the manipulator should approach the target surface
with a reduced moderate velocity until contact is detected by the
force sensor. In the third phase, the controller has to slow down
the moving parts while tuning the applied contact force to the
desired value at the end of the transition.

In the subsequent sections, we analyse phase two, approach-
ing, and phase three, force control with the help of the corre-
sponding mechanical models. The aim of the following investi-
gation is to determine the maximum velocity that can be applied
during the first phase of rough positioning with the assump-
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tion of securing soft (inelastic-like) collision with the target and
avoiding multiple contacts. In other words, an appropriate con-
trol strategy is developed for the approach-and-touch procedure
that minimizes the time required for the approach of an object
before it is touched.

2 Mechanical Model
The simplest non-trivial mechanical model is assumed that

can be used to analyse the above described problem of approach-
and-touch. This model consists of two rigid bodies connected by
a linear spring and a linear viscous damper, as shown in Fig. 1.
The mass m of the block represents the inertia of the manipula-
tor system, the spring of stiffness k and the damper of damping
coefficient c model the linear visco-elastic characteristics of the
force sensory system. Dry friction is neglected everywhere, and
the mass mc of the bumper is assumed to be negligible, which
means that its velocity becomes zero as it touches the wall. Still,
this model can describe abrupt change of the contact force from
zero as the bumper touches the wall, since the relative velocity
between the two ends of the damper will become discontinuous,
while the spring force will increase continuously from zero.

The state of the system is described by two coordinates, the
absolute position of the block of mass m, and the position of the
bumper relative to the block, which are x1 and x2, respectively.
Since the absolute position of the target wall is only available
with limited accuracy, the distance between the bumper and the
wall at x1 = 0 and x2 = 0 appears as an offset δ , 0. The block
is driven by the control force Q. The instantaneous control force
is computed by the controller based on computed torque con-
trol, on state feedback, or on the combination of the two. The
aim of the procedure is to approach the target with the bumper,
and to provide the desired constant force Fd in a fast and robust
way without losing contact with the wall after it was touched
once. Since the mass of the bumper is neglected, the Newto-
nian governing equations form a system of ordinary differential
equations (ODEs), where the first is a second-order ODE for x1

while the second is a first-order ODE for x2 corresponding to a
mechanical system of one and a half degrees of freedom (DoF).

The spring force kx2 and the damping force cẋ2 depend on
the relative position x2 and relative velocity ẋ2 of the bumper,
respectively. If there is no contact between the bumper and the
target, the following equations of motion are obtained:

mẍ1 = kx2 + cẋ2 + Q, (1)

mc(ẍ1 + ẍ2) = −kx2 − cẋ2, (2)

which become decoupled for mc = 0), obviously, if the control
force Q does not depend on the state variables x2 and ẋ2 of the
force sensory system. These equations hold till the condition
of getting in contact with the wall does not fulfil. The criterion
of getting in contact with the wall is given with the help of the

Fig. 1. Mechanical model of the approach-and-touch task.

offset δ in the following form:

x1 + x2 − δ = 0. (3)

During contact, the contact force Fc > 0 acting on the target is
the resultant of the spring force and the damping force:

Fc = −kx2 − cẋ2. (4)

Consequently, the contact force will appear in the equation of
motion of the block, but the actual mathematical form of the
corresponding ODE remains the same as (1). In the meantime,
the geometric constraint in (3) will be valid, which can also be
reformulated as a kinematic constraint:

ẋ2 = −ẋ1, (5)

and this remains true till the contact force is positive. After
the introduction of the velocity of the block (x3 = ẋ1) with the
standard Cauchy transformation, the corresponding discontinu-
ous mathematical model is formed of two systems of three first-
order ODEs:

ẋ1

ẋ2

ẋ3

 =


0 0 1
−k/c 0 0

0 0 0




x1

x2

x3

 +


0
0

Q/m

 ,
if x2 + x1 − δ < 0 (6)

for no contact, and:
ẋ1

ẋ2

ẋ3

 =


0 0 1
0 0 −1
0 k/m −c/m




x1

x2

x3

 +


0
0

Q/m

 ,
if kx2 − cx3 < 0 (7)

for contact. In order to illustrate the behaviour of the uncon-
trolled system, simulations were carried out with constant driv-
ing force that equals to the desired contact force Q(t) ≡ Fd.
Fig. 2 represents the results. It should be noted that even though
the collision of the zero-mass bumper and the wall appears to be
totally inelastic, multiple contacts (bouncing) can occur. In case
of zero viscous damping coefficient c = 0, however, the colli-
sion of the rigid body system and the wall still looks perfectly
elastic with periodic impacts of constant mechanical energy.
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Fig. 2. Simulation results for constant driving force, parameters m = 1 kg,
k = 100 N/m, c = 2 Ns/m, Q(t) ≡ Fd = 5 N, δ = 0.2 m. Phase space (left), time
history (right).

3 Optimization of the Computed Torque
As explained in the introduction, our goal is to maximize the

velocity of approach applied during the rough positioning phase,
while we are going to avoid multiple impacts to the target that
serves as a constraint together with the saturation of the con-
troller at control force magnitude Qm. If we approach the target
with maximum speed, the kinetic energy of the manipulator is
maximized, too, and the maximum actuator force should be used
(see [10]) to slow it down as fast as possible at the desired equi-
librium state

x1(t) ≡ δ + Fd/k, x2(t) ≡ x2,d = −Fd/k. (8)

This means that a kind of bang-bang computed-torque control
will be applied with control force

Q(t) = −Qm sgn(ẋ1). (9)

Also, the maximum velocity of approach can be calculated of-
fline from the condition that the system has to settle at the de-
sired state (8) in a stable way.

In the following subsections different cases will be studied,
depending on how many constant control force steps are imple-
mented, starting with the simplest one-step scenario.

3.1 One-step Scenario
Consider the case, when the manipulator touches the target

at the time instant t0 = 0 but the controller is switched on only
at an appropriate time instant t1, that is, Q(t) ≡ 0 for t < t1
and Q(t) ≡ Fd for t ∈ [t1,∞) leading to a standstill at the de-
sired equilibrium. Fig. 3 represents this control scenario. Due
to the zero-point offset, the contact occurs at x1(0) = δ. The
corresponding velocity of approach va can be determined in the
following way. The initial conditions are

x2(0) = 0 and ẋ2(0) = −va, (10)

consequently, the specific solution of (2) is

x2(t) = −
va

ωd
e−ζωnt sin (ωdt) , t ∈ [t0, t1) , (11)

where the undamped natural angular frequency, the damped nat-
ural angular frequency and the damping ratio are:

ωn =

√
k
m
, ωd = ωn

√
1 − ζ2 and ζ =

1
2mωn

, (12)

Fig. 3. Control strategy with one step, parameters m = 1 kg, k = 100 N/m,
c = 2 Ns/m, Fd = 5 N, x2,d = −0.05 m, δ = 0.1 m, t1 = 0.148 s, va = 0.579 m/s.

respectively. The peak in (11) is at

t1 =
1
ωd

arctan

 √
1 − ζ2

ζ

 . (13)

In order to bring the system to the desired equilibrium state, the
peak value at t1 has to be equal to the desired position x2,d =

−Fd/k. From (8), the velocity of approach can be expressed
explicitly:

va = x2,dωn exp

 ζ√
1 − ζ2

arctan

 √
1 − ζ2

ζ

 . (14)

Its numerical value is va = 0.579 m/s for the data presented in
Fig. 3. For ζ = 0, the expression simplifies to

va = x2,dωn. (15)

In the subsequent cases, more complicated scenarios will be
considered where the velocity of approach is increased further,
but the analytical calculations cannot be carried out explicitly in
the same way as we did above for the one-step case.

3.2 Two-steps Scenario
In order to increase the velocity of approach, larger amount of

kinetic energy is to be eliminated by the controller. Considering
(9), the maximal braking force should be applied immediately
after the contact is detected at t0 = 0 until the time instant t1
where the velocity ẋ2 becomes zero:

Q(t) ≡ −Qm, t ∈ [0, t1), ẋ2(t1) = 0. (16)

Then the same desired force Q(t) ≡ Fd should be applied for
t ∈ [t1,∞), just as in the previous case. Fig. 4 illustrates this
scenario.

Introduce the maximum static deformation of the spring by
f0 = Qm/k. The initial conditions are the same as in (10) and
the corresponding specific solution of (2) is

x2(t) = f0 − e−ζωnt
(

va + ζωn f0
ωd

sin(ωdt) + f0 cos(ωdt)
)
, (17)

The time instant t1 can be calculated from the condition ẋ2(t1) =
0, where x2 has a minimum:

t1 =
1
ωd

arctan
 ωdva

ω2
d f0 + ζωn(ζωn f0 + va)

 . (18)
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Fig. 4. Control strategy with two steps, parameters m = 1 kg, k = 100 N/m,
c = 2 Ns/m, Fd = 5 N, x2,d = −0.05 m, δ = 0.1 m, t1 = 0.082 s, va = 1.188 m/s.

Fig. 5. Control strategy with three steps, parameters m = 1 kg, k = 100 N/m,
c = 2 Ns/m, Fd = 5 N, x2,d = −0.05 m, δ = 0.1 m, t1 = 0.114 s, t2 = 0.429 s,
va = 2.741 m/s.

This time, the velocity of approach va cannot be expressed in
closed form from the condition x2(t1) = x2,d, but any simple
nonlinear solver can provide its numerical value. For the given
parameters, the velocity of approach is increased from 0.579 m/s
of the one-step-case to 1.188 m/s of the two-steps-case.

3.3 Three-step Scenario
If overshoot is permitted while the multiple impacts are still

excluded, the control strategy can be extended with a third step
(see Fig. 5), allowing a higher velocity of approach compared
to the previous cases. The applied control force is Q(t) ≡ −Qm

for t ∈ [0, t1) as in the previous case, but then Q(t) ≡ Qm for
t ∈ [t1, t2) and Q(t) ≡ Fd for t ≥ t2 only, where t1 and t2 are the
subsequent time instants when the velocity of the block is zero:
ẋ2(t1) = 0 and ẋ2(t2) = 0.

Initial conditions for phase t ∈ [t0, t1) are given in (10), and
the specific solution for this interval is (17), as before. The con-
dition ẋ2(t1) = 0 is valid for the three-steps scenario as well, and
t1 can be calculated according to (18).

In order to formulate the initial conditions for the phase
t ∈ [t1, t2), x2(t)1 can be calculated from (17) and (18), while

ẋ2(t1) = 0 is prescribed. The specific solution for this interval is

x2 (t) = − f0 + (x2 (t1) + f0) e−ζωn(t−t1)

×

(
ζωn

ωd
sin (ωd (t − t1)) + cos (ωd (t − t1))

)
. (19)

Since there is a half oscillation between t1 and t2, the time instant
when the control force should be changed to Fd is at t2 = t1 +
π/ωd where t1 comes from (18). Numerical solution of x2(t2) =
x2,d can be carried out to determine va that ensures the arrival
to the desired state of equilibrium (8). This value is increased
further to 2.741 m/s.

3.4 Four-step Scenario
In order to determine the maximum allowed approaching ve-

locity for which multiple impacts are avoided, an additional con-
trol step should be involved as illustrated in Fig. 6. The ap-
plied control force is Q(t) ≡ −Qm for t ∈ [0, t1), Q(t) ≡ Qm for
t ∈ [t1, t2), Q(t) ≡ −Qm for t ∈ [t2, t3) and Q(t) ≡ Fd for t ≥ t3.
The instant when the contact force Fc might decrease to zero is
denoted by tc (see Fig. 6). The critical case of no loss of contact
is a kind of grazing where Fc(tc) = 0 and the contact force has a
local minimum, that is, Ḟc(tc) = 0, too. In accordance with (4),
these conditions provide two equations,

kx2 (tc) + cẋ2 (tc) = 0 (20)

for the two unknowns tc and va. One can solve these equations
numerically, when x2(t) is substituted from (19), in which t1 and
va are given by (19) and (18). In order to identify the missing

Fig. 6. Control strategy with four steps, parameters m = 1 kg, k = 100 N/m,
c = 2 Ns/m, Fd = 5 N, x2,d = −0.05 m, δ = 0.1 m, t1 = 0.121 s, tc = 0.417 s,
t2 = 0.523 s, t3 = 0.568 s, va = 3.541 m/s.

time instants t2 and t3, the continuity conditions of x2(t) are used
at t2. Consequently, the differential equation (2) is solved for the
interval [t2, t3) with the initial condition x2(t2) and ẋ2(t2) calcu-
lated from (19):

x2(t) = f0 + (x2(t2) − f0)e−ζωn(t−t2)

×

((
ζωn

ωd
+

ẋ2(t2)
(x2(t2) − f0)ωd

)
sin(ωd(t − t2)) + cos(ωd(t − t2))

)
.

(21)
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Tab. 1. Summary of the results, velocity of approach va, switching times t1,
t2 and t3 in case of different control strategies.

No. of

steps

va [m/s] t1 [s] t2 [s] t3 [s]

1 0.579 0.148 - -

2 1.188 0.082 - -

3 2.741 0.114 0.429 -

4 3.541 0.121 0.523 0.568

With this solution and with its time derivative, we obtain two
equations,

x2(t3) = x2,d, ẋ2(t3) = 0 (22)

for the two unknowns t3 and t2. The corresponding numerical
values are presented in Fig. 6. The velocity of approach is
maximized at 3.541 m/s, and the corresponding switching
times define the bang-bang-like computed torque function. The
results are summarized in Tab. 1.

4 Conclusions
The approach-and-touch process was analysed in case of stiff

targets with low damping and/or inaccurate position feedback.
In these cases the approach phase takes the relevant part of the
transition time. A time-optimal open-loop control strategy was
designed with respect to the length of the approach phase, and
the corresponding bang-bang-like computed-torque was calcu-
lated for the contact phase. The maximum velocity of approach
can be achieved in case of a four-step scenario, but this includes
a grazing before the desired contact force is reached.

Note that the approach-and-touch process considered here
aimed to model robotic applications. As discussed in [9], the
human strategy is different in the sense that our fingers pro-
vide large damping, even in case of stiff targets, we cannot use
piecewise-constant bang-bang control because of the character-
istics of muscles, while we also experience the contact position
offset δ due to the finite sensitivity of our position detection.
There are similarities in the control strategies, but the measure-
ment results in [9] showed that human muscle activity can be
observed even before the contact occurs. Further analysis of the
approach-and touch process may lead to improved robotic ap-
plications.
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