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Abstract
The present report gives the formulation of the mechani-

cal/mathematical models of the stability of asymmetrically built
and loaded circular multi-layered sandwich-type plates with
(constructionally) orthotropic hard and transversally isotropic
soft layers. Using tensor formalism the corresponding basic
formulas are given and the governing equations and natural
boundary conditions are derived
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1 Formulation of the Problem
In the theory of structures with combined materials the

sandwich-type ones plays special role because of their good and
predictable physical characteristics. Theories of classical three
and regularly multi-layered sandwich plates and shells are done
well in the literature. From the point of view of practical ap-
plications irregularly built multi-layered plate and shell struc-
tures are also very important. Our investigations are dealing
with such structures, closely the aim of them are the comparative
study of the analytical, experimental and numerical solution of
the stability for asymmetrically built and loaded multi-sandwich
rectangular plates with (constructionally) orthotropic hard and
transversally isotropic soft layers, using the common supposi-
tions in the theory of sandwich and sandwich-type structures
(Hoff (1950), Bolotin (1965), Sun et al. (1968)).

Our foregoing research dealt with the stability of regularly
multi-layered [5] and asymmetrically built and loaded three- and
multi-layered rectangular sandwich-type (consisting of alternat-
ing each other hard and soft layers) plates [4],[6]. In the latter
case - continuing the proceedings - to the formulation of the sta-
bility task it was supposed, that

• material of all layers are elastic and orthotropic (transversally
isotropic) or in the case of constructive anisotropy the layout
of the hard layers permits to use the “effective stiffness the-
ory”, i.e. by “smoothing” (energetically) the stiffness charac-
teristics of the reinforced layers the stiffness of equivalent flat
layers can be determined;

• the “hard” layers constitute elastic plates obeying the
Kirchhoff-Love laws;

• in the “soft” layers the antiplane shear stresses and in the
“transversally soft” layers moreover the antiplane normal
stresses are also characteristics and all these are constant
across the soft layer thickness and proportional to the cor-
responding strains. These mean, that the displacement fields
of soft layers are linear and determinate by the adjacent hard
layers (Mindlin-type layers)[1].

• according to the loading of the plate it is supposed, that the
hard layers are loaded with a constant normal and tangential

Boundary value problem 552012 56 1

http://www.pp.bme.hu/me


to the boundary membrane forces only, but this forces could
be different - in particular case zero - for different layers and
directions.

In the following for the investigations of the stability of cir-
cular sandwich plate all these suppositions are saved.

The main differences in the tasks of the stability of the rect-
angular and circular sandwich plates are in the geometry. Many
of authors at formulation of different tasks of circular plates for
deriving the corresponding strain components simply are going
out from their form in the Descartes coordinates and use trans-
formation rules between the coordinate systems [2], [3]. This
method can be work well in simply tasks, but in the case of more
complex structures some members of the basic equations can be
missed. To avoid this problem in the given paper by formula-
tion of the mathematical- mechanical model of the stability of
multi-layered circular sandwich-type plate from the beginning
the correct tensor formalism in the system of polar coordinates
was used. The corresponding formulas - well known in the thin
elastic plate theory - are given in the Appendix 1.

2 Mathematical – Mechanical Modeling
2.1 Initial position
Let us investigate the stability of the asymmetrically built

multi-layered circular sandwich-type plate of radius r0 with
n (constructionally) orthotropic hard and n − 1 transversally
isotropic soft layers of thickness hλ and sλ (λ = 1, 2) correspond-
ingly, loaded on the boundary of the hard layers by normal

(
N11
λ

)
and may be tangential

(
N12
λ

)
distributed in-plane edge forces.

Let join to the plate a polar coordinate system such a way,
that the basic [r,θ] plane of the system coincide with the middle
surface of the first hard layer and in normal direction to this
plane the hard layers let have labels λ = 1, 2, ..., n, where ∆λ =
1. (In case of symmetrically to the middle plane built plate there
is more advantageous to join the coordinate system to the middle
surface of the plate and to use a labeling λ = ±1,±2,±3, ...,±m,
if n is even and λ = 0,±2,±4, ...,±m, if n is odd, where in both
case m = n − 1 and ∆λ = 2.) The λ-th soft layer takes place
between the hard layers with labels λ and λ + ∆λ (Fig. 1).

Our former investigations for the stability of regularly multi-
layered (Pomázi (1974 and 1992)) and asymmetrically built and
loaded three-layered plates with constructionally orthotropic
hard layers (Pomázi (1980, 1985 and 1990)) give the basic meth-
ods, formulas and governing equations of the problem.

2.2 Displacement fields
The mechanical-mathematical model of a multi-layered plate

with n hard layers is based on the displacement field of the
plate, which could be described by 3n displacement functions
(as Lagrangean coordinates) in the coordinate directions uα(x,y),
vα(x,y), wα(x,y) of the points belonging to the basic surfaces of
the hard layers. The displacements in the hard layers are de-
termined by the Kirchhoff-Love law; in the soft layers - based

Fig. 1. Multilayered circular sandwich-type plate and it’s basic data

on the suppositions - they are linear functions of local normal
coordinates and can be expressed by the displacements of adja-
cent hard layers. So, using this linearity of displacement func-
tions and the corresponding constitutive equations the strain and
stress fields of the hard and soft layers can be obtained (Pomázi
(1980 and 1992)).

Going out from the aspects of modeling used in the connected
previous works [1], [11] the strain and stress field of the plate in
this case will be based also on the displacement fields of the
points belonging to the middle surface of the hard layers, con-
sequently the model will be continuous by the in-plane coordi-
nates and discrete in normal direction of the plate, expressed by
the labels λ of the layers.

Using the common designations of the mathematical and
physical quantities and the basic assumptions for the displace-
ment – strain fields mentioned in point 1. we have the displace-
ments (Fig. 2):

For hard layers:

ūλ =

 ūλα
de f
= uλα + x3θλα

ūλ3
de f
= wλ ; (α = 1, 2)

uλ =


u1

u2

u3


λ

=


u
rv
w


λ

=


uλ
rvλ
wλ


where uk (k = α, 3 and α = 1, 2) are the vector coordinates and
uxk = (u, v, w)the physical ones. Relation of these coordinates
is given by the well known formula: uk = Hkuxk where Hk are
the Lame’s coefficients (H1 = H3 = 1, H2 = r).

For soft layers:

ũλ =


ũ
rṽ
w̃


λ

=


uC

rvC

wC


λ

+
ξ

sλ


uD − uC

r(vD − vC)
wD − wC
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where:

uA = uλ−∆λ −
hλ−∆λ

2
wλ−∆λ,1 ;

uB = uλ +
hλ
2

wλ,1 ;

uC = uλ −
hλ
2

wλ,1 ;

uD = uλ+∆λ +
hλ+∆λ

2
wλ+∆λ,1

analogously:

vA = ..., vB = ..., vC = ..., vD = ...,

and:
wA = wλ−∆λ; wB = wC = wλ; wD = wλ+∆λ.

Fig. 2. The displacement field of the layers

2.3 Strain fields:
For hard layers –because of it’s plane-shell-type – the

strain field can be describe by the covariant derivatives on the
middle surface of the displacement field (see Appendix 1.) and
so – in general – the strain and curvature tensors are:

ε̄αβ =
1
2

(uα‖β + uβ‖α ); καβ = θα‖β ,

where by the Kirchhoff - Love law: εα3 = 0, and so the rotation
of the layer’s normal:

θα = −w,α −bβαuδ = −w,α

Consequently in the given case the strain field of the hard lay-
ers (missing the labels of λ) can be expressed by the following
vector/physical coordinates of strain and curvature tensor:

ε11 = εr,

ε12 = rεrθ,

ε22 = r2εθθ,

εr = u,r ,
εrθ =

1
2 ( u,θ

r + v,r − v
r ),

εθθ =
v,θ
r +

u
r ,

κ11 = κr,

κ12 = rκrθ,
κ22 = r2κθθ,

κθθ = −w,rr ,

κrθ = −
(

w,θ
r

)
,

r
κθθ = −

(
w,θθ
r2 +

w,r
r

)
.

For soft layers we have to take into consideration, that dis-
placements of the λ-th hard layer – uλ, vλ, wλ playing roll later
at using variational theorem – will appear in the strains of adja-
cent λ-th and λ−∆λ-th soft layers, therefore the strains for both
of soft layers is describing as follows:

γ̃λ13 = γ̃
λ
rz =

1
sλ

[
uλ+∆λ − uλ +

(
c′λwλ + c′′λwλ+∆λ

)
‖1

]
,

γ̃λ23 = rγ̃λθz =
r
sλ

[
vλ+∆λ − vλ +

(
c′λwλ + c′′λwλ+∆λ

)
‖2

]
ε̃λ33 = ε̃

λ
z =

1
sλ

(wλ+∆λ − wλ) ,
γ̃λ−∆λ13 = γ̃λ−∆λrz =

1
sλ−∆λ

[
uλ − uλ−∆λ +

(
c′λ−∆λwλ−∆λ + c′′λ−∆λwλ

)
‖1

]
γ̃λ−∆λ23 = rγ̃λ−∆λθz =

r
sλ−∆λ

[
vλ − vλ−∆λ +

(
c′λ−∆λwλ−∆λ + c′′λ−∆λwλ

)
‖2

]
ε̃λ−∆λ33 = ε̃λ−∆λz = 1

sλ−∆λ
(wλ − wλ−∆λ)

Parameters

c′λ = 1/2 (hλ + sλ) ;

c′′λ = 1/2 (hλ+∆λ + sλ) ;

c′λ−∆λ = 1/2 (hλ−∆λ + sλ−∆λ) ;

c′′λ−∆λ = 1/2 (hλ + sλ−∆λ)

2.4 Constitutive laws:
Taking into account that by the basic suppositions material of

the hard layers are orthotropic and it is transversally isotropic
for the soft layers, for all the layers the Hooke’s law is valid:
σ = B · ε , and

For the hard layers:

b11 =
E1

ν̄
, b12 =

ν12E1

ν̄
, b22 =

E2

ν̄
, b66 = G12,

ν̄ = 1 − ν12ν21, νikEk = νkiEi, (bik = bki)

For the transversally soft layers:

b33 = E′
1 − ν

1 − ν − 2ν0ν′
, b44 = b55 = G, ,

and the Hooke’s law:

τ̃rz = Gγ̃rz ,

τ̃θz = G γ̃θz ,

σ̃z = b33, ε̃z,

2.5 Generalized constitutive laws:
a) For hard layers:
Hard layers of sandwich-type plates very often are stiffened

by stringers or by bending common thin plates. In such “con-
structionally anisotropic” cases, if on the half-wave length of
the solution –functions, characterizing the strain/stress field of
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the layer there are more stiffeners, then it is possible to formu-
late the problem for a layer with constant thickness by determin-
ing the equivalent stiffness characteristics due to use the effec-
tive stiffness theory [11]. The σ and τ stresses in the “general-
ized constitutive law“ usually are coupled except if the stiffened
layer’s material is isotropic and the layer itself has symmetric
characteristics, when the model of the layer will be orthotropic
plane-shell.

The strain/stress field of such an equivalent orthotropic hard
layer with constant hλ thickness - on the basic of the Kirchhoff-
Love law - can be determined by the ε strain and κ curvature
vectors and by the N internal force and Mbending/torsional mo-
ments vectors, getting by integration of the stresses and their
static moments on the layer’s thickness. Taking ς for local coor-
dinate from the middle plane of the hard layer for these vectors
we have:

ε∗ = ε + ςκ =


ε11

ε22

γ

 + ς

κ11

κ22

2χ

 ,
∫
σdς = N =


N11

N22

N12

 ,
∫
σςdς = M =


M11

M22

H

 .
The torsion: H = 2D66.χ.

Taking into account the Hooke’s law for the stress/train rela-
tion by point 2.4 after integration we get the constitutive law for
the internal forces and moments in form: N

M

 =  C K
K D

 ·  ε
κ


where C, K, D are the stiffness matrices of the hard layers

having forms:

C =


C11 C12 0
C21 C22 0
0 0 C66


,

K =


K11 K12 0
K21 K22 0
0 0 K66


,

D =


D11 D12 0
D21 D22 0
0 0 2D66


.

Components of this matrices due to determination of the in-
ternal forces/moments are integrals on the thickness of the hard
layers of the bik parameters of the constitutive law of the mate-
rial of the layers:

Cik =

∫
bikdξ, Kik =

∫
bikξdξ,Dik =

∫
bikξ

2dξ.

Matrix Kexpress the coupling effect between the stretching and
bending of the hard layers, which effect is usual for the (con-
structionally) orthotropic layer [4],[6].

b) For transversally soft layers:
On the basis of suppositions for the transversally soft layers of

constant thickness s, that the strain/stress state of these layers are
constant by the normal to the layer, the generalized constitutive
law for these layers will be:

Ñ =


T̃ 13

T̃ 23

Ñ33

 =


C̃13 0 0
0 C̃23 0
0 0 C̃33

 ·

γ̃13

γ̃23

ε̃33

 ,
= C̃ · ε̃ ,

where stiffnesses of the layers: C̃13 = C̃23 = s2B, C̃33 = s2R.
Here B = G̃

s , R = Ẽz
s , where G̃ and Ẽz are the average of

the shear and Young moduli in normal direction of the layer:

G̃ = sB =
s∫ s

0
1
G dξ

, Ẽ3 = sR =
s∫ s

0
1

b33
dξ
,

Physical coordinates :

T̃ 13
λ = T̃ λrz = s2

λBλγ̃
λ
rz

rT̃ 23
λ = T̃ λθz = s2

λBλγ̃
λ
θz,

Ñ33
λ = Ñλz = s2

λRλε
λ
z

2.6 Relations between the physical and tensor coordinates:

Nr = N11 ,Nrθ = rN12,Nθ = r2N22.

Mr = M11,Mrθ = rM12,Mθ = r2M22

T̃rz = T̃ 13 , T̃θz = rT̃ 23 , Ñz = Ñ33

3 Formulation of the Boundary-value Problem
Following the method given in [1], [4] the governing equa-

tions and natural boundary conditions of the given task in the
frame of our suppositions can be derived by using the Trefftz
variational principle for the functional of total potential energy
of the sandwich plate. The corresponding formulas are as fol-
lows:

3.1 Energy densities and the total potential energy:
Following the formalism of Bolotin (1965) the strain energy

densities of hard and transversally soft layers (missing the label
of the hard layers: λ) are respectively :

dU =
1
2

(σ11ε11 + σ
22ε22 + σ

12ε12) + Ēε̄2O (δ) ,

dŨ =
1
2

(τ̃13γ̃13 + τ̃
23γ̃23 + σ̃

33ε̃33) + Ēε̄2O (δ)


δ ∼

(
H2

l2
,

E
Ē

)
,
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where parameter δ is of second order terms is determined by the
quadrate of relations of the full thickness (H) to the characteris-
tic half-wave length of the deformation of the plate (l), or by the
relation of the characteristic Young moduli of the soft (E)and
the hard

(
Ē
)

layers.
Here the term σ̃33ε̃33 corresponds to the effect of anti-plane

tension/compression of the transversally soft layer. If this term
is negligibly small compared with others, then can be missed
and the layer is as usual simple soft. More sophisticated analysis
of the characters of the layers is given by Bolotin (1965), Pomázi
and Moskalenko (1967).

Neglecting the second order terms, the energy densities are:

dU =
1
2

(σ11ε11 + σ
22ε22 + σ

12ε12) ,

dŨ =
1
2

(τ̃13γ̃13 + τ̃
23γ̃23 + σ̃

33ε̃33)

After integration of these densities by thickness of the layer
we get the surface densities in forms:

Πλ =

∫ h
2

− h
2

dUdx3, Π̃λ =

∫ s

0
dŨdx3,

Πλ =
1
2

(
Nαβεαβ + Mαβκαβ

)
λ
=

1
2

(ε C ε + 2 ε Kκ + κ D κ)λ ,

Π̃λ =
1
2

(
T̃α3γ̃α3 + Ñ33ε̃33

)
λ
=

1
2

[
G̃

(
γ̃2

13 + γ̃
2
23

)
+ Ẽ3ε̃

2
33

]
λ

and calculating also the surface potential energy (work) of ex-
ternal forces N̂αβ by the formula:

ΠLλ =
1
2

[
N̂11 · (u3;1)2 + 2N̂12 · (u3;1) · (u3;2) + N̂22 · (u3;2)2

]
λ

= 1
2

(
N̂αβλ wλ‖αwλ‖β

)
after integration of these on the surface of the layers:

Uλ =
"

(A)
Πλ dA ,

Ũλ =
"

(A)
Π̃λdA

Lλ =
"

(A)
ΠLλdA

we get the total potential energy of the plate as the functional
to be minimize.

I 〈uλ, vλ,wλ〉 =
n∑
λ=1

(Uλ − Lλ) +
n−1∑

1

Ũλ.

3.2 Variational principle:
The Trefftz variational principle: δ

(
δ2∗U0

)
= 0 , where

δ2∗U0 = I (i.e. the second special variation of the total energy
for the neutral equilibrium state is equal to the total potential
energy for the real small displacements at bifurcation) was ana-
lyzed and used for derivation of basic equations of stability and
vibrations of regularly multilayered plates by BOLOTIN [1] and
also by the author [4–6].

In our case the first variation of functional I 〈uλ, vλ,wλ〉 by the
displacement functions uλα = (uλ, vλ) ,wλ is connected over the
λ-th hard and soft layers also with the soft layer of label: λ − 1,
therefore the Trefftz variational principle: δ I = 0 has form:

δI 〈uλ, vλ,wλ〉 = (δUλ − δLλ) +
(
δŨλ−∆λ + δŨλ

)
= 0.

Variations of energy expressions in detail have form:

For hard layers (by label’s exchanging):

δUλ =
"

(A)

[
Nαβδuα‖β − αβδw‖α‖βdA

]
λ
,

δLλ =
"

(A)
N̂αβλ wλ‖β × δwλ‖α dA.(α, β = 1, 2),

which formulas are the same as for the thin plate. In these ex-
pressions and also later in expression of δŨλ−∆λ + δŨλ =δŨλλ−∆λ
it is necessary to eliminate the derivatives of the displacement’s
variations. This is possible as follows for the first member of
dUλ. Taking into account, that from derivatives of product

Nαβδuα‖β =
(
Nαβδuα

)
‖β
− Nαβ

‖β
δuα,

the first member of dUλ:"
(A)

Nαβδuα‖β dA =
"

(A)

(
Nαβδuα

)
‖β

dA −
"

(A)
Nαβ
‖β
δuα.

For the first integral on the right hand side let use the Gauss
- Ostrogradsky theorem:

!
(A) C ⊗ ∇ dA =

∮
L C · nds, which

in the given case (being the bracket (C) scalar) have form:!
(A) C‖α dA =

∮
L Cnαds,

and so we have:"
(A)

Nαβδuα‖β dA =
∮

(L)
Nαβδuαnβds −

"
(A)

Nαβ
‖β
δuαdA.

Taking the same steps for the second member of dUλ we have:

δUλ =
∮

L

[
Nαβnβδuα −Mαβnβδw‖α

]
λ

ds−"
(A)

[
Nαβ
‖β
δuα −Mαβ

‖β
δw‖α

]
λ

dA,

where because of derivative of the normal displacement’s varia-
tion δw‖α the last member of this expression has to be integrated
and it is:

"
(A)

[
Mαβ
‖β
δw‖α

]
λ

dA =
∮

L

[
Mαβ
‖β

nαδw
]
λ

ds−"
(A)

[(
Mαβ
‖β

)
‖α
δw

]
λ

dA

Using the Gauss – Ostrogradsky theorem also for the potential
of external forces:
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δLλ =
"

(A)
N̂αβλ wλ‖β × δwλ‖α

dA =
"

(A)

[(
N̂αβw‖β

)
‖α
δw

]
λ

dA−∮
L

[(
N̂αβw‖β

)
nαδw

]ds

λ
.

For the soft layers (by formulas above):

δŨλλ−∆λ =
(
δŨλ−∆λ + δŨλ

)
=

"
A0

(
δΠ̃λ−∆λ + δΠ̃λ

)
dA

where the energy density for the λ-th soft layer - using relations
between tensor and physical coordinates by point 2.6 - is:

Π̃λ =
1
2

(
T̃λrzγ̃

λ
rz + T̃λθzγ̃

λ
θz + Ñλz ε̃

λ
z

)
=

1
2

(
T̃13
λ γ̃
λ
13 + rT̃23

λ γ̃
λ
23 + Ñ33

λ ε̃
λ
33

)
and similar expression can be written for the λ − 1 layer, too.
Taking into account the strain expressions for the soft layers

by point 2.3 we have:

δŨλλ−∆λ ="
A0

[
T̃ 13

u δuλ + T̃ 23
u (rδvλ)+

Ñ33
w δwλ + T̃ 13

w δwλ‖1 + T̃ 23
w δwλ‖2

]
dA,

where coefficients of the displacement’s variations (writing up
by the physical coordinates of the internal forces using relations
of point 2.6):

T̃ 13
u = T̃ rz

u =
1

sλ−∆λ
T̃ λ−∆λrz −

1
sλ

T̃ λrz;

T̃ 23
v =

T̃ θzv

r
=

1
r

(
1

sλ−∆λ
T̃ λ−∆λθz −

1
sλ

T̃ λθz

)
;

Ñ33
w = Ñz

w =
1

sλ−∆λ
Ñλ−∆λz −

1
sλ

Ñλz ;

T̃ 13
w = T̃ rz

w =
c′′λ−∆λ
sλ−∆λ

T̃ λ−∆λrz +
c′λ
sλ

T̃ λrz;

T̃ 23
w =

T̃ θzw

r
=

1
r

(
c′′λ−∆λ
sλ−∆λ

T̃ λ−∆λθz +
c′λ
sλ

T̃ λθz

)
.

In integral-expression of δŨλ
λ−∆λ

the last two member have
derivative of the normal displacement’s variation δw‖α therefore
– similar to the method used at the hard layers above –
these members after partial integration and using the Gauss-
Ostrogradsky theorem:"

A0

[
T̃ 13

w δwλ‖1 + T̃ 23
w δwλ‖2

]
dA =

"
A0

[
T̃α3

w δwλ‖α
]

dA =∮
L

[
T̃α3

w nαδw
]

ds −
"

A0

[
T̃α3‖α

w δw
]
λ

dA,

where the surface covariant derivatives: T̃ 13
w‖1 = T̃ 13

w ,1 and
T̃ 23

w‖2 = T̃ 23
w ,2 +

1
r T̃ 13.

Returning to the physical coordinates of the internal forces
and to the derivatives by the coordinates using equalities
( ) ,1 = ( ) ,r , ( ) ,2 = ( ) ,θ, finally we have:

δŨλλ−∆λ =
"

A0

{
T̃rz

u δuλ + T̃θzv δvλ

+

[
Ñz

w −

(
T̃rz

w ,r +
1
r

T̃rz
w +

1
r

T̃θzw ,θ

)]
δwλ

}
dA+

+

∮
L

[
T̃ rz

w nr + T̃ θzw nθ
]
δwλds.

Using expressions of δUλ , δLλ , δŨλλ−∆λ for the first variation
of functional I 〈uα,w〉 we get:

δI 〈uα,w〉 =
∮

L

[
Nαβnβδuα − Mαβnβδw‖α

+

(
Mαβ
‖β
· nα − N̂αβw‖β · nα + T̃α3

w nα

)
δw

]
λ

ds

−

"
(A)

{[
Nαβ
‖β
+ T̃α3

u

]
δuα +

[(
Mαβ
‖β

)
‖α

+
(
N̂αβw‖β ‖α

)
+ T̃α3

w‖α + T̃ 33
w

]
δ w}λ dA = 0

According to the hard layers in expression δUλ the second
member of the boundary integral −

∮
L

[
Mαβnβδw‖α

]
λ

ds at α = 2
in physical coordinates has form:

−

∮
L

[ Mθ r

r
nr +

Mθ
r2 nθ

]
δw,θ ds =

−

∮
L

[( M θ r

r
nr +

Mθ
r2 nθ

)
δw

]
,θ ds

+

∮
L

( Mθ r,θ
r

nr +
Mθ,θ
r2 nθ

)
δw ds,

where the first integral is equal to zero (ds = rdθ), the second
one is an additional member in the boundary condition at δw , 0
.

On the basis of expressions above we can write the bound-
ary value problem for the stability of multi-layered circular
sandwich-type plate in physical coordinates as follows:

3.3 Governing equations (for the l-th layer):
1 Nr,r +

1
r Nrθ,θ +

1
r (Nr − Nθ) + T̃ rz

u = 0 ,

2 Nrθ,r +
2
r Nrθ +

1
r Nθ,θ + T̃ θzv = 0,

3 Mr,rr +
2
r2 Mrθ,theta +

2
r Mrθ,rθ −

1
r Mθ,r + 2

r Mr,r +
1
r2 Mθ,θθ + Ñz

w

−
(
T̃ rz

wr +
1
r T̃ rz

w +
1
r T̃ θz,θw

)
− q̂ = 0

where: q̂ = N̂rwrr + 2N̂rθ

(
wθ
r

)
r
+ N̂θ

(
wr
r +

wθθ
r2

)
.

This set of governing equations consists of 3n difference-
differential equation, expressing that the mechanical-
mathematical model of the problem is continuous by the
in-plane coordinates x,y and discrete by the coordinate z,
perpendicular to the plate, expressed by label: l.
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3.4 Natural boundary conditions at r0 = const.:
In equation δI = 0 the general expression of the boundary

integral in physical coordinates has form:∮
L

{[
Nrnr +

Nrθ

r
nθ

]
δu +

( Nrθ

r
nr +

Nθ
r2 nθ

)
r δv −

[
Mrnr +

Mrθ

r
nθ

]
δw ′r

+

[(
Mr ′r +

2Mrθ ′θ

r
+

1
r

(Mr − Mθ) − N̂rw ′r −
N̂rθ

r
w ′θ + T̃ rz

w

)
nr

+

(
1
r

Mθr ′r +
2
r

Mrθ +
2
r2 Mθ ′θ −

1
r

N̂θrw ′r −
1
r2 N̂θw ′θ + T̃ θzw

)
nθ

]
δw

}
ds = 0,

from which on the boundary r0 = const.(nr = 1, nθ = 0) of
the λ-th hard layer:

1 δuλ , 0 → Nr = 0

2 δvλ , 0 → Nrθ = 0 ,

3 δw ′r , 0 → Mr = 0

4 δwλ , 0 → Mr ′r +
1
r (2Mrθ ′θ + Mr − Mθ) − N̂rw ′r −

1
r N̂rθw ′θ + T̃ rz

w = 0

Basic equations for the boundary hard layers give special addi-
tional boundary conditions, in which all members of expressions
T̃ rz

u , T̃ θzv , Ñz
w related to the missed soft layers on the surface of

the plate are equal to zero, expressed by the zero material con-
stants (or zero stiffnesses), i.e.:at

λ = 1 : B0 = R0 = 0→ T̃ 0
rz = T̃ 0

θz = Ñ0
z = 0,

at

λ = n : Bn = Rn = 0→ T̃ n
rz = T̃θnrz = Ñn

z = 0

These conditions should be taken into account in the bound-
ary conditions on the boundary r0 = const. of the layers λ = 1, n.
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Appendix 1.
Descartes coordinates: Polar coordinates:
x1 ≡ x, x2 ≡ y, x3 ≡ z x1 ≡ r, x2 ≡ θ, x3 ≡ z

Position vector of the material points:
r = r

(
xα, x3

)
= r̄ (xα) + x3a3

Derivatives and basic unit vectors:
gk =

∂r
∂xk = r ′k; aα = r̄ ′α; gα = aα

(
xβ

)
+ x3a3 ′α;

g3 =
g1 × g2

|g1 × g2|
= a3 ≡ k

a1 = i · cos θ + j · sin θ ≡ er;
a2 = −i · sin θ + j · cos θ ≡ reθ

Christoffel’s symbols:
ak ′l = Γ

m
klam (k, l,m = α 3 α = 1, 2)

Γ1
22 = −x1 = r;Γ2

21 = Γ
2
12 =

1
x1 =

1
r ;

Γ3
αβ

de f
= bαβ = 0;Γβα3 = bβα = 0

ak ′l = aα ′β + a3 ′β + a3 ′3 = aα ′β because:
a3 ′β = −bαβ aα = 0 (Weingarten formula),
a3 ′3 = Γ

α
33aα = 0.

aα ′β = Γk
αβak = Γ

δ
αβaδ + bαβa3 = Γ

δ
αβaδ (Gauss formula)

aα ′β = aα‖β = aα,β − Γδαβaδ = bαβa3 = 0 (Weingarten’s law)

Covariant derivatives on the middle surfaces of the hard
layers:
aα‖β = aα ′β − Γδαβaδ, aαβ

‖γ
= aαβ′γ + Γ

α
γδa
βδ + Γ

β
δγa
δα,

aαβ
γ‖ε
= aαβγ ′ε + aδβγ Γαδε + aαδγ Γ

β
δε − aαβγ Γδγε,

Γ1
22 = −r, Γ2

21 = Γ
2
12 =

1
r .
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