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Abstract
In this work the J-integral is applied to calculate the energy

release rate in simple beam and plate models. Four examples
are considered: the mode-I double-cantilever beam, the mode-
II end-notched flexure, the mixed-mode I/II single-leg bend-
ing specimens and a delaminated plate with simply-supported
edges, respectively. In each example the details of calculation
are given, in the latter case the distribution of the energy re-
lease rate along the crack front is calculated. While for delam-
inated beams the literature presents the energy release rates in
numerous studies, the J-integral calculation is not trivial in the-
ses cases. Moreover for delaminated bent plates the application
of the J-integral is not documented. It is shown that considering
the classical plate theory there are serious limitations to calcu-
late representative energy release rates.
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Hungary
e-mail: szeki@mm.bme.hu

1 Introduction
The J-integral was developed in 1968 by Rice [1] to charac-

terize the strain concentration around cracks and notches. The
original definition of the integral is:

J =
∫
C

(Wnk − σi jui,kn j)ds (1)

where the parameters will be defined later. Essentially, 2D prob-
lems were presented including elastic and elastic-plastic field
theories. Later, the method was extended for orthotropic com-
posite materials [2, 3] and 3D problems too [4–6]. In the latter
case the so-called Jk vector was defined:

Jk =

∫
C

(Wnk − σi jui,kn j)ds+

∫
A

(Wδk3 − σi3ui,k),3dA, k = 1, 2 (2)

J3 =

∫
C

W3n1 − σ3 ju3,1n j)ds (3)

where according to Fig. 1 nk is the outward normal vector of
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Figure 1: Reference system for the 3D J-integral.
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Figure 2: Double-cantilever beam loaded in pure bending (a) and by a wedge force (b).
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Figure 3: Integration path for the end-notched flexure specimen.

Fig. 1. Reference system for the 3D J-integral.

the contour C, δi j is the Kronecker tensor, σi j is the stress ten-
sor (σi jn j is the traction vector), ui is the displacement vector, A
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is the area enclosed by contour C. The contour C contains the
crack tip and the integration is carried out in the counterclock-
wise direction (see Fig. 1). Under static conditions the J-integral
is equivalent to the energy release rate, G, which is also known
as the crack driving force [7]. The original brittle fracture model
of Griffith [7] applies the

G =
∂U
∂A
−
∂WF

∂A
(4)

relation to determine G, which is useful if the dependence of the
strain energy, U and work of external forces, WF are known in
the function of crack length a (dA = bda, where b is the width).
However, for problems, where the mentioned relationships with
the crack length are difficult to determine the J-integral is very
effective. The energy release rate can be obtained using field
theories, i.e. the stress and strain states are to be calculated an-
alytically or numerically. In this paper some basic problems are
analyzed, which are in fact simple, but - to telling the truth -
not available in the literature and could be useful for those who
face to the J-integral application for the first time. Four ex-
amples are considered here: the mode-I double-cantilever beam
(DCB) [8–16], the mode-II end-notched flexure (ENF) speci-
men [14, 15, 17, 18] and the mixed-mode I/II single-leg bending
(SLB) system [14, 15, 17, 18]. Finally, a simply-supported de-
laminated elastic plate subjected to a point force is analyzed. In
the latter problem a three dimensional analysis is necessary and
some nontrivial aspects of the calculation are presented.

2 Example 1. - mode-I double-cantilever beam
The DCB specimen is a very well known, common specimen

[11–16], schematically shown in Fig. 2. We analyze two loading
schemes: DCB loaded in pure bending and subjected to a point
force. Although mainly the second case is involved in practical
tests, even the first case has practical importance, see e.g.: [10].

2.1 DCB in pure bending
Fig. 2 shows the DCB subjected to pure bending. The contour

consists of four parts. The corresponding stress and displace-
ment components can be obtained by simple beam theory [7]:

(1) : σx = 0, τxy = 0, u = 0 (5)

(2) : σy = 0, τxy = 0, v =
Mx2

2IE
(6)

(3) : σx =
−12M

bh3 y, τxy = 0, u =
−12M
bh3E

yx (7)

(4) : σy = 0, τxy = 0, v =
Mx2

2IE
(8)

where b is the specimen width, h is the thickness, I is the area
moment of inertia, E is the flexural modulus. The strain energy
density, W is nonzero only for contour No. 3:

W =
1
2
σxεx =

1
2
σ2

x

E
=

1
2

144M2

b2h6E
y2 (9)

The integral of the strain energy density becomes:∫
C

Wds =

−h/2∫
h/2

Wdy

∣∣∣∣∣∣∣∣∣
x=a

=

1
2

144M2

b2h6E

[
y3

3

]−h/2

h/2
= −

1
2

12M2

b2h3E
(10)

where the arc length coordinate is s = −y. The second term in
the integral is nonzero again only for contour No. 3:∫

C

σi jui,kn jds =

−h/2∫
h/2

σx
du
dx

ds

∣∣∣∣∣∣∣∣∣
x=a

=

144M2

b2h6E

[
y3

3

]−h/2

h/2
= −

12M2

b2h3E
(11)

The sum of the latter two expressions gives:

J1 =
12M2

2b2h3E
(12)

Considering the fact that we have analyzed only a half model,
we have:

JI = 2J1 =
12M2

b2h3E
(13)

which is well-known from the literature [11–16].

2.2 DCB loaded by concentrated force
The DCB loaded by a wedge force is considered in Fig. 2b.

The stress and displacement components for the contour parts
based on simple beam theory are:

(1) : σx = 0, τxy = 0, u = 0 (14)

(2) : σy = 0, τxy = 0, v =
P

2IE

(
ax2

2
−

x3

3

)
(15)

(3) : σx = 0, τxy = 0, u =
−P

bh3E

(
ax −

x2

2

)
y (16)

(4) : σy = 0, τxy =
P
bh
, v =

P
2IE

(
ax2

2
−

x3

3

)
(17)

The integral of strain energy density along the through-thickness
direction is zero even for contour No. 3:∫

C

Wds =

−h/2∫
h/2

Wdy

∣∣∣∣∣∣∣∣∣
x=a

=

1
2

−h/2∫
h/2

τxy

(
dv
dx
+

du
dy

)
dy

∣∣∣∣∣∣∣∣∣
x=a

= 0 (18)

which can be explained by the fact that transverse shear defor-
mation is not considered. The second term in Eq. (2) becomes:

∫
C

σi jui,kn jds =

−h/2∫
h/2

τxy
dv
dx

ds

∣∣∣∣∣∣∣∣∣
x=a

= −
12P2a2

2b2h3E
(19)

Again, taking two times the result of the the half model, we
have:

JI = 2J1 =
12P2a2

b2h3E
(20)
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Figure 1: Reference system for the 3D J-integral.
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Figure 2: Double-cantilever beam loaded in pure bending (a) and by a wedge force (b).
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Figure 3: Integration path for the end-notched flexure specimen.

Fig. 2. Double-cantilever beam loaded in pure bending (a) and by a wedge force (b).

3 Example 2. - mode-II end-notched flexure specimen
The ENF specimen is a standard beam for the measurement

of the mode-II toughness of composites [14–18]. The specimen
geometry is depicted by Fig. 3. For the calculation we define a
zero-area path [23] around the crack tip. The dashed lines show
the stress and displacement fields on both sides of the tip. The
problem is symmetric with respect to the x-axis, therefore we
consider the top half of the beam only. The outward normal
vectors of contours No. 1 and 2 are:

nT
1 =

[
1 0 0

]
, nT

2 =
[
− 1 0 0

]
(21)
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Figure 1: Reference system for the 3D J-integral.
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Figure 2: Double-cantilever beam loaded in pure bending (a) and by a wedge force (b).
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Figure 3: Integration path for the end-notched flexure specimen.Fig. 3. Integration path for the end-notched flexure specimen.

The stress tensor, traction vector, displacement vector field
and its derivative for the right and left contour parts, respectively
are:

(1) : σ1 =


σx1 0 0
0 0 0
0 0 0

 ,T1 = σ1n1 =


σx1

0
0

 ,
u1 =


−v′y

v
0

 , du1

dx
=


−v′′y

v′

0

 (22)

(2) : σ2 =


−σx2 0 0

0 0 0
0 0 0

 ,T2 = σ2n2 =


σx2

0
0

 ,
u2 =


−v′y

v
0

 , du2

dx
=


−v′′y

v′

0

 (23)

where v=v(x) the transverse deflection of the beam. The strain
energy densities on both sides of the crack tip are given by:

W (1) =
1
2
σx1εx1 =

1
2
σ2

x1

E
=

1
2

M2
1

I2
1 E

y2 (24)

W (2) =
1
2
σx2εx2 =

1
2
σ2

x2

E
=

1
2

M2
2

I2
2 E

y2 (25)

where I1 = bh3/3, I2 = bh3/12 are the area moments of inertia,
M1 = M2 = −Pa/4 are the moments reduced to the crack tip.
The integral of strain energy densities in the thickness direction
results in:

∫
C

Wds =
1
2


h∫

0

W (1)dy +

−h/2∫
h/2

W (2)dy

 =
1
2

 M2
1

I2
1 E

[
y3

3

]h

0
+

M2
2

I2
2 E

[
y3

3

]−h/2

h/2

 = − 9P2a2

32b2h3E
(26)

The second part of the J-integral is:

∫
C

σi jui,kn jds =

h∫
0

T1
du1

dx
dy +

−h/2∫
h/2

T2
du2

dx
dy =

h∫
0

σx1(−v′′(+0))ydy +

−h/2∫
h/2

σx2(−v′′(−0))ydy =

=

h∫
0

M1

I1

(
M1

I1E

)
y2dy +

−h/2∫
h/2

M2

I2

(
M2

I2E

)
y2dy =

=
P2a2

16I2
1 E

[
y3

3

]h

0
−

P2a2

16I2
2 E

[
y3

3

]h/2

−h/2
= −

9P2a2

16b2h3E

(27)

The sum of Eqs. (26) and (27) leads to:

J1 =
9P2a2

32b2h3E
(28)

Taking Eq. (28) two times the energy release rate (ERR) be-
comes:

JII = 2J1 =
9P2a2

16b2h3E
(29)

Apparently, this simple formula is well-known in the literature
[14, 15, 17, 18].

4 Example 3. - the single-leg bending specimen
As a mixed-mode I/II fracture system we consider the SLB

specimen [15, 19–22], shown by Fig. 4. As it is seen, the bot-
tom arm is unloaded. It is reasonable to calculate the mode-I
and mode-II ERRs separately. A mode decomposition method
has been proposed by Shivakumar and Raju [5] which is based
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Figure 4: Integration path and stress decomposition for the single-leg bending specimen.
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Figure 5: Delaminated plate subjected to point load (a). Stepped thickness plate (b).

Fig. 4. Integration path and stress decomposition for the single-leg bending
specimen.

on the separation of the displacement and stress components
into symmetric and antisymmetric parts. Later, it was shown by
Rigby and Aliabadi [6] that the stress decomposition in [5] was
partly incorrect and the method has been revisited, which was
applied later by numerous authors, e.g.:[24, 25]. Fig. 4 shows
that in the case of the SLB specimen the stress state can be de-
composed by superimposing a DCB loaded by a bending mo-
ment Pa/2 and an ENF specimen, shown by Fig. 3. For this
simple beam problem the method of Shivakumar and Raju [5]
is equivalent to the global method by Williams [26]. Thus we
have, based on Eqs.(13) and (29) the followings:

JI =
12P2a2

16b2h3E
, JII =

9P2a2

16b2h3E
, JI/II =

21P2a2

16b2h3E
(30)

which has already been published based on strength of materials
analysis [15, 19–22].

5 Example 4. - a simply-supported delaminated elastic
plate
In this section we present the solution for a simply-supported

delaminated plate subjected to a point force. The plate is sym-
metrically delaminated, hence - since there is no delamination
opening - the plate is under mixed-mode II/III fracture condi-
tion. Let us consider now Fig. 5, which is the original problem.
In fact this problem can be treated as a stepped thickness plate
[27, 28] as it is shown by Fig. 5b. Due to the fact that the bend-
ing stiffness is piecewise continuous the only alternative is Lévy
plate formulation [29–32] to solve the problem.

5.1 Diplacement field – Lévy solution
To solve the problem we adopt Lévy plate formulation [29,

32]. The deflection functions and area moments of inertia of the
uncracked and delaminated parts are given by:

w1(x, y) : −c ≤ x ≤ 0, 0 ≤ y ≤ b, I1 =
2
3

t3 (31)

w2(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, I2 =
1
6

t3 (32)

C
y

x

a

2L

L

2h
h

x=-0 x=+0

1

2

P

P
2

P
2

crack tip

y

x1

2

Pa
2

Pa
2

y

x1

2

4
Pa

symmetricPa
4

y

x1

2

4
Pa

assymmetricPa
4

Pa
2

== +

Figure 4: Integration path and stress decomposition for the single-leg bending specimen.
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Fig. 5. Delaminated plate subjected to point load (a). Stepped thickness

plate (b)

In the y direction the deflections are approximated by sin
functions, i.e. we have:

w1(x, y) =
∞∑

n=1

W1n(x) sin βy (33)

w2(x, y) =
∞∑

n=1

W2n(x) sin βy (34)

The governing equation of isotropic, elastic plates is [29]:

∂4w
∂x4 + 2

∂4w
∂x2yx2 +

∂4w
∂y4 =

p
I1E1

(35)

where p is the surface pressure and E1 = E/(1 − ν2). Taking
Eqs.(31) and (32) back into (39) yields:

∂4W1n

∂x4 − 2β2 ∂
2W1n

∂x2 + β
4W1n = 0 (36)

∂4W2n

∂x4 − 2β2 ∂
2W2n

∂x2 + β
4W2n =

Qn

I2E1
(37)

where [32]:

Qn =
2Q0

b
δ(x − x0) sin βy0 (38)

moreover:

δ =

 1 i f x = x0

0 i f x , x0
(39)

The solution functions must satisfy the following boundary con-
ditions:

W1n(−c) = 0 (40)
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∂2W1n

∂x2 − β
2νW1n

∣∣∣∣∣∣
x=−c
= 0 (41)

W2n(a) = 0 (42)

∂2W2n

∂x2 − β
2νW2n

∣∣∣∣∣∣
x=a
= 0 (43)

Moreover, continuity of the deflection, slope, bending moment
and effective (Kirchhoff) shear force must be ensured involving
the following conditions [27, 28]:

W1n(0) = W2n(0) (44)

∂W1n

∂x

∣∣∣∣∣
x=0
=
∂W2n

∂x

∣∣∣∣∣
x=0

(45)

I1

(
∂2W1n

∂x2 − β
2νW1n

)∣∣∣∣∣∣
x=0
=

I2

(
∂2W2n

∂x2 − β
2νW2n

)∣∣∣∣∣∣
x=0

(46)

I1

(
∂3W1n

∂x3 − β
2(2 − ν)

∂W1n

∂x

)∣∣∣∣∣∣
x=0
=

I2

(
∂3W2n

∂x3 − β
2(2 − ν)

∂W2n

∂x

)∣∣∣∣∣∣
x=0

(47)

The properties of the analyzed simply supported plate were (re-
fer to Fig. 5): a = 105 mm (crack length), c = 45 mm (un-
cracked length), b = 100 mm (plate width), t = 1.55 mm (plate
thickness), E = 33 GPa (modulus of elasticity), ν = 0.27 (Pois-
son’s ratio), Q0 = 1000 N (point force magnitude), x0 = 31 mm,
y0 = 50 mm (point of action coordinates of Q0). The computa-
tion was performed by using the code MAPLE [33] by applying
19 Fourier series terms (N) by creating a for-do cycle.

5.2 J-integral evaluation
To calculate the J-integral - similarly to the ENF system - we

define a zero-area path around the crack tip in accordance with
Fig. 6. The problem is symmetric with respect to the midplane,
therefore we analyze only the top half of the plate. The outward
normals are given by Eq.(21). This problem involves the 3D J-
integral, therefore, Eqs.(2) and (3) must be used. However, due
to the zero-area path, the surface integral term in Eq.(2) becomes
zero. The stress tensor, traction vector, displacement vector and
its derivative for contours No. 1 and 2 are:
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Figure 6: Integration path and stress couples around the crack tip for an elastic plate.
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Fig. 6. Integration path and stress couples around the crack tip for an elastic
plate.

(1) : σ1 =


σx1 τxy1 0
τyx1 σy1 0

0 0 0


x=−0

T1 = σ1n1 =


σx1

τyx1

0


x=−0

u1 =


−w1,x · z
−w1,y · z

w1


x=−0

du1

dx
=


−w1,xx · z
−w1,xy · z

w1,x


x=−0

(48)

(2) : σ2 =


−σx2 −τxy2 0
−τyx2 −σy2 0

0 0 0


x=+0

,

T2 = σ2n2 =


σx2

τyx2

0


x=+0

,

u2 =


−w2,x · z
−w2,y · z

w2


x=+0

,
du2

dx
=


−w2,xx · z
−w2,xy · z

w2,x


x=+0

(49)
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Thus, the J1 integral becomes:

J1 =
1
2

−h/2∫
h/2

{
Mx2

I2
z(−w2,xx · z)+

My2

I2
z(−w2,yy · z) +

Mxy2

I2
z(−2w2,xy · z)

}
x=+0

dz+

+
1
2

h∫
0

{
Mx1

I1
z(−w1,xx · z)+

My1

I1
z(−w1,yy · z) +

Mxy1

I1
z(−2w1,xy · z)

}
x=−0

dz+

−


−h/2∫

h/2

{
Mx2

I2
z(−w2,xx · z) +

Myx2

I2
z(−w2,xy · z)

}
x=+0

dz+

+

h∫
0

{
Mx1

I1
z(−w1,xx · z) +

Myx1

I1
z(−w1,xy · z)

}
x=−0

dz



(50)

Since there is no crack opening, we have:

J2 = 0 (51)

Finally, J3 is:

J3 =
1
2

−h/2∫
h/2

{
My2

I2
z(−w2,yy · z) +

Mxy2

I2
z(−2w2,xy · z)

}
x=+0

dz+

+
1
2

h∫
0

{
My1

I1
z(−w1,yy · z) +

Mxy1

I1
z(−2w1,xy · z)

}
x=−0

dz+

−


−h/2∫

h/2

{
Myx2

I2
z(−w2,xy · z)

}
x=+0

dz+

h∫
0

{
Myx1

I1
z(−w1,xy · z)

}
x=−0

dz


(52)
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Fig. 7. Incompatible displacement field due to My in a delaminated elastic
plate.

In Eqs.(50) and (52) the terms related to σy and εy in J1 and
J3 should be ignored. This can be justified by the incompatible
displacement field illustrated in Fig. 7. Theoretically, if there
is no crack opening then at the point where the cracked and
uncracked parts are connected to each other the strain in the y

direction and the distribution of the stress σy are the same, in
other words there is no discountinuity between the cracked and
uncracked parts. Therefore, in the ideal case the integration of
the stress, σy producted by the strain in the y direction over the
thickness would lead to zero. Consequently, the Kirchhoff plate
model predicts erroneously the stress state in the transition zone,
which can be counteracted only by ignoring the terms in ques-
tion. Moreover, in accordance with Fig. 6 it can be seen that
Mxy is a negative stress couple, while Myx is positive, otherwise
they have the same magnitude i.e.: Myx = −Mxy. It can also be
noticed in Fig. 6, that at an actual point they amplify each other.
Thus, the J-integrals for the delaminated plate are:

J1 = −
1
2

(
Mx2w2,xx

∣∣∣
x=+0 − Mx1w1,xx

∣∣∣ x=−0

)
+

2
(

Mxy2w2,xy

∣∣∣
x=+0 − Mxy1w1,xy

∣∣∣
x=−0

)
(53)

J3 = 2
(

Mxy2w2,xy

∣∣∣
x=+0 − Mxy1w1,xy

∣∣∣
x=−0

)
(54)

Next, we need to separate J1 and J3 into mode-II and mode-
III J-integrals. There is a direct decomposition method [5, 6],
which provides the mode-I, mode-II and mode-III J-integrals in
the form of:

J1 = JI + JII + JIII (55)

J2 = −2
√

JI JII , J3 = JIII (56)

i.e. the JIII-integral is directly obtained from J3. In our case the
mode-I component is zero, thus we have:

JII = JII(y) = −
1
2

(
Mx2w2,xx

∣∣∣
x=+0 − Mx1w1,xx

∣∣∣
x=−0

)
(57)

JIII = JIII(y) = 2
(

Mxy2w2,xy

∣∣∣
x=+0 − Mxy1w1,xy

∣∣∣
x=−0

)
(58)

The result of Kirchhoff plate theory is compared to finite ele-
ment results carried out by ANSYS 12, detailed in next section.

X=-0

X=+0
C

X

Y

Z

M1
x22

M1
x22

M1
y22

t
2

M

M

M

M1

1

1
xy2

yx2

yx2

yx1
2

2

2

Mxy1

Mx1

My1

M1
xy22

t
2

b.

M1
y22

1

2

Figure 6: Integration path and stress couples around the crack tip for an elastic plate.

My1

Z

Y

M1
y22

M1
y22

M1
y22

My1

M1
y22

incompatible
displacement field

2

1

Figure 7: Incompatible displacement field due to My in a delaminated elastic plate.

XY

Z

1

crack

Figure 8: ANSYS FE model of the simply-supported delaminated plate.Fig. 8. ANSYS FE model of the simply-supported delaminated plate.

5.3 Numerical solution by VCCT and J-integral
In order to verify the analytical results a finite element analy-

sis was carried out. The 3D finite element model of the plate
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is shown by Fig. 8. The model was created in the commer-
cial ANSYS 12 package using 8 node solid elements. In the
vicinity of the crack tip a refined mesh was constructed includ-
ing trapezoid shape elements [19]. The z displacements of con-
tact nodes over the delaminated surface were imposed to be the
same. The mode-II and mode-III ERRs were calculated by the
virtual crack-closure technique (VCCT, e.g.: [34]), the size of
the crack tip elements were ∆x = 0.25 mm, ∆y = 0.25 mm
and ∆z = 2 mm. For the determination of GII and GIII a so-
called MACRO was written in the ANSYS Design and Para-
metric Language (ADPL). The MACRO gets the nodal forces
and displacements at the crack tip and at each pair of nodes, re-
spectively, then by defining the size of crack tip elements it de-
termines and plots the ERRs at each point along the crack front.
Apart from the VCCT GII and GIII were determined also by
the the J-integral, which is available in ANSYS 12 as a built-in
command.

5.4 Comparison of analytical and numerical results
The mode-II, mode-III ERRs and the mode ratio along the

crack front are shown by Fig. 9. The symbols show the result
of the VCCT and the J-integral by FEM, while the curves rep-
resent the purely analytical plate theory solutions. It is seen that
the mode-II component is significantly underestimated by the
plate theory solution. On the contrary the mode-III component
is overestimated. While the VCCT predicts that the mode-III
ERR decays suddenly near the edges, there is not any decay
in accordance with the plate solution. From the practical point
of view this difference is insignificant. The crack is expected
to initiate/propagate at the points where the highest ERR takes
place. This point is in fact almost identical predicted by the two
methods. The ANSYS’ J-integral underpredicts both ERR com-
ponents in comparison with the VCCT. In this respect, the plate

theory solution agrees more or less with the mode-II ERR, on
the contrary the mode-III component by the numerical J-integral
is significantly underpredicted and neither the plate theory nor
the VCCT shows good agreement with it. In Fig. 9a the curve
marked by GMy represents that part of the J-integral, which was
calculated by the bending moment My and the corresponding
strains in the y direction. This curve shows extremely large dis-
crepancy compared to the FE results. This confirms that Kirch-
hoff plate theory is insufficient in this respect. The mode ratio
(GII/GIII) is depicted in Figure 9b. It shows that the VCCT and
the numerical J-integral is in a reasonably good agreement with
each other. The plate theory solution slightly underestimates
the mode ratio, however the nature of the curves matches well
with the numerical results. The overall agreement between the
VCCT and plate theory methods is acceptable. The difference
between the VCCT and plate theory solution can be attributed
to the transverse and interlaminar shear effects. Further work is
necessary to improve the plate theory solution.

Considering the possible application of plate theory solution
it must be noted, that nowadays more and more attention is fa-
vored to the mode-III and mixed-mode II/III or I/III fracture of
composite materials. Recently, de Morais and Pereira published
many studies for carbon/epoxy systems involving the bending
of plate specimens. The mode-III 4-point bending plate [35],
the mixed-mode I/III 8-point bending [36] and the mixed-mode
II/III 6-point bending plate [37] specimens involve the bending
of delaminated plates. Analytical reduction techniques are not
yet available for these systems. As a future work, by using a
proper plate theory this problem is planned to be solved.

6 Conclusions
The application of J-integral has been demonstrated includ-

ing common fracture specimens and a delaminated simply-
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supported isotropic plate. While for cracked beams the J-
integral is relatively simple to be calculated, in the plate theory
solution some inconsistencies have been elaborated. First, plate
have curvatures in the y direction too, and it has been shown that
the transition zone between the cracked and uncracked parts are
erroneously predicted by the plate model. This can be coun-
teracted by ignoring the stress and displacement components in
the y direction when we calculate the J-integral. Second, in the
mode-III component it must be considered, that the twisting mo-
ments in the different planes amplify each other, consequently in
the J-integral their sum appears. Otherwise, based on compar-
ison with finite element calculations plate theory seems to be
suitable to calculate energy release rate in delaminated plates,
however higher order plate theories may help to achieve better
accuracy.
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