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Abstract

In applied mechanics several papers concentrate on the com-

parison of delayed and non-delayed approaches of controlled

machines. We may study both continuous and discrete time sys-

tems. The principal points of interest in the following work are

how continuous time systems differ from its representation as

some discrete time system in stability and robustness and how

the discretisation of a continuous time subsystem acts on the

stability properties of the coupled system.
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1 Introduction

The stability of controlled mechanical systems is a key aspect.

In numerous problems of mechanical engineering a machine is

controlled by a digital device to perform some task. Such sys-

tem has two essentially different parts. The one is the machine

in the sense of mechanical engineering. It is usually described as

a continuous time system by using one of the traditional meth-

ods of applied mechanics. The other subsystem is the discrete

controller. Generally we have a complex nonlinear system of

a continuous time and a discrete time subsystems. Instability

may arise from either the continuous or the time discrete parts.

For example, in balancing the unstable continuous time system

should be stabilised by digital control. An obvious problem in

such problems is the sampling delay effect. When it is neglected

an anticipatory model is obtained. The properties of it may and

may not be different from the original one.

In our previous paper [1] the equation of motion was derived

for a simple controlled inverted pendulum with length l and mass

m (see Fig. 1). The pendulum was attached to a cart with a hinge

and its stability was achieved by applying force F to the cart.

Fig. 1. Inverted pendulum
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By using Lagrangian formalism the equation of motion is
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where the two generalised coordinates are the position x of the

cart and the angular position ϑ of the pendulum measured from

the upwards vertical. On the right hand side of (Eq. 2) the gen-

eralised force Q is equal to the control force

(Q(t) ≡) F (t) = c1ϑ̇ (t − τ) + c0ϑ (t − τ) , (3)

where PD control gains are denoted by c0, c1. In (Eq. 3) the

output of the controller is delayed expressing the fact that in

most cases there is a time delay τ between the measurement or

sampling and the action of the controller.

2 Discrete dynamical systems

There are two possible ways of approach in controlled me-

chanical systems. Firstly, we may express ẍ from (Eq. 2) and

substitute into (Eq. 1) then
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F(t) = c1ϑ̇ (t − τ) + c0ϑ (t − τ) . (5)

The other possibility is to keep the two generalised coordi-

nates and force F as unknown functions from (Eq. 3) and then
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3lẋ2 sinϑ cosϑ − 6g sinϑ(

−4 + 3 cos2 ϑ
)

l
+

6F cosϑ(
−4 + 3 cos2 ϑ

)
ml
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F(t) = c1ϑ̇ (t − τ) + c0ϑ (t − τ) .

A detailed derivation of the continuous time dynamical systems

(Eq. 4), (Eq. 5) and (Eq. 6) can be found in [1] and it is followed

by a linear stability investigation of the upright position. Then

the behaviour of the systems with delayed and non-delayed con-

trol is compared by numerical analysis, which requires discreti-

sation.

When delay is omitted (τ = 0) in the control law (Eq. 5) an

incursive feed-in-time system is obtained [3]

F(t) = c1ϑ̇ (t) + c0ϑ (t) ,

which is more obvious for a discrete time t ∈ [t0, t1, . . . , ti, . . .]

system

F(ti) = c1ϑ̇ (ti) + c0ϑ (ti) , (7)

while any nonzero delay should be interpreted as some recursive

form. Assume for the sake of simplicity that

ti = t0 + i∆t, where i = 1, 2, . . . ,

and τ = ∆t, where ∆t is a small positive time step. Then (Eq. 5)

results recursion

F(ti) = c1ϑ̇ (ti−1) + c0ϑ (ti−1) .

When numerical simulation is needed, we should form a set

of difference equations instead of (Eq. 5), (Eq. 4) and (Eq. 6).

Let us introduce new variables:

y1 = ϑ, y2 = ϑ̇, y3 = x, y4 = ẋ, y5 = F

and simplifying notation

yk(i) = yk (ti) (k = 1, 2, ..., 5).

Then in the feed-in-time (τ = 0) case from (Eq. 4) and (Eq. 7)
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or simply
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is obtained. From (Eq. 6) the recursive discrete dynamical

system reads
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3 Numerical analysis of discretised systems

Assumed that the origin of delay is the sampling ∆t=0.0005s.

Remark that setting is a serious restriction. The reason to use it is
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Fig. 2. Aperiodic case

Fig. 3. Similarity.

to study the simplest possible case and to remain at the original

time continuous problem of Stépán [2]. However, we should

investigate in further work the general case , which seems to be

a much more realistic assumption. The initial values are

y1 (0) = 0, y2 (0) = 0.001, y3 (0) = 0, y4 (0) = 0, y5 (0) = 0.

Control gains are varied. Time histories for feed-in-time and

feed-back are plotted.

Fig. 2 shows that in the stable non-periodic region (Eq. 9) and

(Eq. 10) leads almost to the same results. However, when con-

trol parameters are selected near to the stability boundary of the

delay equation, the difference is more obvious. In Fig. 3 we find

damped oscillations, while in Fig. 4. the feed-in-time system

remains near to the origin, while in case of feedback an obvious

instability can be detected. In the first graph of Fig. 4 the system

remains in a interval, which can be considered as a stable (but

not asymptotically stable) behaviour. The other observation is

that feedback results a much higher frequency oscillation that

feed-in-time.

4 Conclusions

For a digitally controlled system sampling delay plays an im-

portant role as it was already published in the literature. Numer-

ical simulation has shown that effect is almost negligible away
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Fig. 4. Qualitative difference.

from stability boundaries and bifurcation values. In addition we

have found that the resulting oscillation is of higher frequency

for a feed-back then for a feed-in-time. On the other hand an

interesting behaviour is detected: the feed-in-time case seems

to be less regular. While the second graphs of both Fig. 3 and

Fig. 4 shows increasing or decreasing harmonic oscillations, the

first graphs show certain irregularity. We feel a contradiction

because a chaotic system may be “regularized” by anticipative

effects. Another remarkable fact is that the delay of continuous

time system may disappear at the discretization.
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