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Abstract

Besides growing accuracy requirements for cut parts the max-

imisation of productivity has still an important role in industry.

One possible measure for productivity in cutting processes is the

material removal rate. This study deals with the optimisation of

the material removal rate considering the bounds set by vibra-

tions through an analitical approach. The damping ratio region

was determined, for which the identified local optima with re-

spect to the maximal material removal rate hold.
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5, Hungary

e-mail: stepan@mm.bme.hu

1 Introduction

An optimal machining strategy always depends on the deter-

mined objective function. Efficiency can be measured accord-

ing to several criteria. These can be: cost effectiveness, mini-

mal/optimal time, optimal usage of capacity, surface quality of

the workpiece, tolerances and accuracy, minimal specific energy

consumption and lifetime. A further measure can be productiv-

ity, which is closely connected to the material removal rate.

Besides well constructed objective functions, there are sev-

eral conditions an engineer has to deal with when the task is to

develop an optimal machining strategy. One group of restrict-

ing conditions are the quality requirements for the surface of a

machined workpiece and the accuracy. Furthermore, there exist

bounds for parameters belonging to each part of the system, the

technology, the machine, the tool, the chuck and the workpiece.

There are also factors, which cannot be determined from cata-

logues yet, for example the boundaries of chatter-free (stable)

regions of a machining process.

The surface quality of the workpiece is highly effected by

vibrations occurring on machine tools. Due to the direct con-

tact between tool and workpiece, the motion of the tool directly

shapes the workpiece surface. There is a variety of reasons caus-

ing vibrations, which can be handled by means of active or pas-

sive vibration elimination methods, but dealing with chatter vi-

brations is a far more complicated issue. The source of these

self-excited vibrations is, on the one hand, the regenerative ef-

fect caused by the feedback between subsequent cuts modulat-

ing the chip thickness [1, 2]. On the other hand, mode coupling

can cause self-excited vibrations during machining, but for the

investigations in this study, only the regenerative effect for the

chip thickness is taken into consideration, since chatter caused

by the mode coupling effect occurs later for most machining

cases [3]. The target of the presented study is to present an an-

alytical approach for the maximisation of the material removal

rate (MRR) taking into account the bounds set by vibrations.

One of the most important objectives in industry nowadays

is maximising productivity, since it is directly connected to ma-

chining costs. Productivity can be measured via the MRR. For

milling, Budak and Tekeli [4] showed a method for increasing
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the chatter free MRR. If we increase the material removal rate

by increasing the depth of cut, there is a risk of tool breakage.

Since chatter vibrations affect the surface quality of the work-

piece, the aim is to avoid unstable cutting and restrict machining

to the stable parameter region. According to this, the risk of tool

breakage does not appear for the investigated conditions, since

too high depth of cut values certainly belong to the unstable ma-

chining region.

2 Mechanical model and stability diagram for orthogo-

nal turning process

The simplest model for examining the stability loss due to

the regenerative effect in cutting mechanisms is the orthogonal

turning model. For this special case, the chip thickness h is equal

to the feed, the width of cut w is equal to the depth of cut. The

orthogonal cutting process can mathematically be described by

means of a singe degree-of-freedom model (Fig. 1) [5]

Fig. 1. DoF orthogonal turning model

The feed cutting force can be determined according to the

well known “three-quarter rule“ [6, 7]:

Fy = kyh3/4w1,1v−0,1. (1)

A simplified formula for the feed cutting force is:

F f = k f h
3/4w, (2)

where kyand k f are cutting constants in feed direction and v is

the cutting velocity. The graph of the feed cutting force as a

function of the chip thickness can be seen in Fig. 2.

The equation of motion can be expressed as follows (see

Fig. 1):

mÿ(t) + bẏ(t) + ky(t) = F f , (3)

where the lumped parameters, by means of which the tool can

be modeled are m, the modal mass of the tool, b, the damping

coefficient and k, the stiffness. The natural frequency of the tool

can be determined by ωn =

√
k
m

. The regenerative effect should

be taken into account, when the chip thickness changes dynam-

ically. The instantaneous value of the chip thickness decreases

by the instantaneous tool displacement, but increases by the dis-

placement of the tool in the previous revolution, which can be

expressed as follows (see Fig. 1):

h(t) = ho + y(t − τ) − y(t), (4)

where h0 is the desired or theoretical chip thickness and [y(t −

τ)−y(t)] is the dynamic one. Substituting these relations into the

equation of motion, we obtain the simplest form of a mathemat-

ical model that includes regenerative chatter for machine tools:

mÿ(t) + bẏ(t) + ky(t) = k f w(ho + y(t − τ) − y(t))3/4. (5)

Fig. 2. Typical feed cutting force as a function of chip thickness

The displacement of the tool can be written as the sum of a

stationary displacement y0 and an η(t) “small” vibration (or per-

turbation) about the stationary position y(t) = yo + η(t). Further-

more, for the stationary state, the following holds for the feed

cutting force:

F f = kyo = k f wh3/4
o . (6)

If this expression is substituted to the equation of motion, it

modifies to the following form:

mη̈(t) + bη̇(t) + k(yo + η(t)) = k f w(ho + η(t − τ) − η(t))3/4. (7)

After performing a Taylor expansion, and neglecting the

higher order terms of the “small” perturbation, one ends up with

the following equation of motion:

η̈(t) + 2ζωnη̇(t) + ω2
nη(t) =

k1

m
(η(t − τ) − η(t)), (8)

where k1 = ∂F
∂h
|h0

= 3
4
k f wh

− 1
4

0
is the cutting coefficient and

ζ = b

2
√

mk
is the damping ratio. The corresponding character-

istic equation is:

λ2 + 2ζωnλ + ω2
n +

k1

m
−

k1

m
e−λτ = 0, (9)

which implies infinitely many characteristic roots. For stabil-

ity investigations, the stability boundary at λ = iω has to be

checked. With the help of the D-subdivision method, the cutting

coefficient can be expressed as:

k1 =
m

2

(ω2 − ω2
n)

2
+ 4ζ2ω2

nω
2

(ω2 − ω2
n)

, (10)
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from which we obtain the depth of cut at the stability boundary:

w =
2

3

mh
1/4
o

k f

(ω2 − ω2
n)

2
+ 4ζ2ω2

nω
2

(ω2 − ω2
n)

. (11)

Analogously, a formula can be deduced for the spindle speed:

Ω =
ωπ

jπ − arctg
ω2−ω2

n

2ζωnω

, (12)

where j is the number of lobes counted from the right (from

above) along the spindle speed parameter. For simplifying the

treatment of the parameters, it is advisory to generate their di-

mensionless form according to the following steps:

Ω̃ =
Ω

ωn

, (13)

w̃ =
k1

k
, (14)

which implies:

Ω̃ =
ω̃

j − 1
π
arctg ω̃2−1

2ζω̃

, (15)

w̃ =
1

2

(ω̃2 − 1)
2

+ 4ζ2ω̃2

ω̃2 − 1
, (15), (16)

where ω̃ = ω
ωn

is the frequency ratio. For fixed machine tool pa-

rameters, the stability diagram can be plotted in the plane of the

dimensionless depth of cut and spindle speed. Typical stability

digrams can be seen in Fig. 3 for three different damping ratios.

Fig. 3. Stability boundaries for ζ1 = 0.005, ζ2 = 0.03, ζ3 = 0.05

3 Maximising the MRR

Since the optimization of the MRR is a very important aspect

for cutting technologies, it necessitates the investigation of ma-

chining parameters, which belong to the maximal MRR within

the stable machining region.

A curve indicating constant MRR in the plane of the depth of

cut and the spindle speed are hyperbolic according to the next

formula:

w =
2MRR

hodΩ
. (17)

where d is the diameter of the machined workpiece. With the use

of dimensionless parameters, we introduce the new parameter

kMRR and reformulate the above relation as:

w̃ =
kMRR

Ω̃
, (18)

where kMRR = 3
2

k f MRR

kh
5/4
0

dωn

. The stability boundary is the border

between the stable and the unstable parameter region, thus we

have to analyse the boundary curve. We assume, that there will

be local optima for the MRR in the intersection points of two

adjacent instability lobes, where the MRR is maximal. Thus,

the intersection points of two adjacent lobes have to be calcu-

lated, which can be done by setting the equations for two adja-

cent lobes indexed by j and j+1 equal:

1

2

(ω̃2
1
− 1)

2
+ 4ζ2ω̃2

1

(ω̃2
1
− 1)

=
1

2

(ω̃2
2
− 1)

2
+ 4ζ2ω̃2

2

(ω̃2
2
− 1)

, (19)

ω̃1

j − 1
π
arctg

ω̃2
1
−1

2ζω̃1

=
ω̃2

j + 1 − 1
π
arctg

ω̃2
2
−1

2ζω̃2

. (20)

Solving Equation (19) for ω̃1, one obtains 4 solutions. Solutions

1 and 2 are ω̃1 = −ω̃2, ω̃1 = ω̃2, which belong to the case

when the two lobes are identical, which naturally is not a usable

solution to the problem. Solution 3 is:

ω̃1 =
−

√
−1+ω̃2

2
+4ζ2√

−1+ω̃2
2

, which belongs to the lower lobe system for

ω < ωn. The lower lobe structure refers to negative cutting coef-

ficient values. Since the dimensionless form of the depth of cut

was obtained according to Formula Eq. 14, it is directly propor-

tional to the cutting coefficient. The cutting coefficient indeed is

negative in some special cases of drilling and milling, for those

cases the lower lobe structure is relevant. In the present study,

the investigated machining technology is turning, for which the

cutting coefficient is positive (see also Fig. 2), thus, the region

belonging to negative cutting coefficients is of no interest. Thus,

the solution related to the specified parameter region is Solution

4: ω̃1 =

√
−1+ω̃2

2
+4ζ2√

−1+ω̃2
2

. This can be substituted back into Equation

(20), which implies an implicit equation including trigonomet-

ric functions that has no closed-form solution, thus can only be

solved numerically.

−ω̃2

( j + 1)π + arctan
1−ω̃2

2

2ω̃2ζ

+
L1

jπ − arctan
2ζ

(ω̃2
2
−1)L1

= 0 (21)

where L1 =

√
1 +

4ζ2

ω̃2
2
−1

.

The ζ damping ratio parameters, for which the stability lobes

were plotted in Fig. 4 are not taken from the realistic physical

range of damping ratios for machine tools, which normally is in

the range of ζ = 0.01 ÷ 0.03. Still carrying out the calculations

for those high damping ratios was necessary for mathematical

investigations explained later.

Assuming certain values for ζ and j, ω̃2 values can be calculated

accordingly. By means of the solutions for ω̃1 and ω̃2, one is

able to calculate the intersection points of two adjacent lobes

on the Ω̃ − w̃ plane. Results for intersection point coordinates

can be found in the Appendix for the following ζ values: 0.001,

0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5. Since the values of

w̃ and Ω̃ in the intersection points are known, the constants of
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Tab. 1. Result for kMMR for the hyperbolas crossing the first five intersection points of two adjacent lobes

ζ = 0.001 ζ = 0.003 ζ = 0.005 ζ = 0.01 ζ = 0.03 ζ = 0.05 ζ = 0.1 ζ = 0.3 ζ = 0.5

1 0,62761 0,63286 0,63814 0,65145 0,70644 0,76425 0,92137 1,73845 2,87889

2 0,14159 0,14354 0,14550 0,15047 0,17138 0,19394 0,25759 0,61760 1,15423

j 3 0,06076 0,06191 0,06307 0,06603 0,07867 0,09256 0,13266 0,36764 0,72482

4 0,03360 0,03441 0,03523 0,03733 0,04639 0,05650 0,08609 0,26218 0,53156

5 0,02131 0,02193 0,02256 0,02419 0,03128 0,03927 0,06290 0,20435 0,42112

Fig. 4. Stability diagram and intersection points of two adjacent lobes for

ζ values: 0.1, 0.3, 0.5.

the hyperbolas crossing the intersection points can be calculated

according to:

kMRR = w̃Ω̃. (22)

Fig. 5. Tendency of kMRR values for the hyperbolas crossing the first five

intersection points of two adjacent lobes (ζ = 0.1)

The numerically calculated values of the dimensionless con-

stants kMRR of the hyperbolas are presented in Tab. 1.

As it is visible from the numerical results and Fig. 5, the di-

mensionless constant kMRR is larger at the intersection points

of the lobes belonging to smaller j values.

For the lower Ω̃ region, for example at machining point H, it

is more favourable for higher MRR to move to point G, since the

increase of the spindle speed is not significant, but much higher

MRRs can be realized. Furthermore, if we examine points E

and F, the MRR can naturally be increased by applying higher

depth of cut values.

For turning processes, the trends of the last decades show an

increase of the applied cutting speeds. One reason for shift-

ing technological parameters towards high spindle speeds is the

growing accuracy requirements. W continuously grows, which

results smaller deformations on the workpiece. This can be re-

alized by means of shifting the number of revolutions to higher

regions, which implies smaller cutting forces (see Formula 1).

The super-hard tool materials used today, like CBN or pCBN

are able to resist high velocities, but because of their rigidity

they are not able to withstand high chip load. The tools made

out of these materials have their optimal lifetime when they are

applied for high speed machining. Furthermore, this is the rea-

son for avoiding high depths of cuts for these tools.

Fig. 6. Stability diagram with constant MRR curves and characteristic

points for (ζ = 0.1)

In order to find the points, where the maximal MRR can be

achieved locally, we refer back to Fig. 6. The analysed interval

for the spindle speed is marked by vertical lines. If we accept

the stability diagram computed for given parameters, it can be

deduced, that the maximal available MRR for the examined in-

terval of the spindle speed is at point A. However, if we cannot

exploit the maximal spindle speed of the machine tool and we

can only go up to Ω̃B, than the maximal available material re-

moval rate is the one belonging to the hyperbola crossing the
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lobe at point B. The MRR is the same for point G and B, thus

it is necessary to find further criteria to be able to judge, which

point is more favourable. As mentioned in the introduction, this

depends on the objective functions, whether surface quality or

minimal energy consumption has to be achieved.

Fig. 7. Judging points B and G

The next criteria for judging the two machining points B and

G in this work is the specific energy required for chip removal.

The points are on the same hyperbola representing one spe-

cific material removal rate, thus MRRB = MRRG holds. Lets

assume, that the feed is set to the same value in both cases and

the cutting constant kf between the two points stays constant.

Furthermore, the machined radius for the two cases is assumed

to be the same, too. The specific energy required for removing

unit chip volume is:

EV =
E

V
, (23)

where V is the chip volume V = wh0s and the required energy

is E = Fys, where s is the length of the cut path.

The following relation holds between the depth of cut and the

spindle speed:

w =
c

Ω
, (24)

where c = 2MRR
hod

. Substituting Formula Eq. 1 and Eq. 24 into

Eq. 23 one ends up with the following expression:

Ev =
20.1kyh−1/4c0.1

d0.1

1

Ω0.2
. (25)

From this result we can draw the conclusion, that the specific

energy required for chip removal is smaller at the point, where

the spindle speed is larger, thus the energy required for removing

a unit chip volume at point B is less compared to point G.

A further aspect that can be included in judging the machining

points is to avoid resonance. For milling operations the stabil-

ity diagram is obtained by means of a more complex calculation

due to parametric excitation, but the described considerations for

local optima can be used well. The amplitude of the vibration

resulting from the forced excitation occuring for milling opera-

tions will be larger at point G at the left asymptote of the lobes.

Thus also from this point of view point B is more favourable.

4 Are the intersection points of two adjacent lobes al-

ways local optima referring to maximal MRR?

As previously mentioned, the requirement for stable cutting

holds. Since the aim is to find the machining point, where the

MRR is maximal, it is advisory to have a look at the intersection

point of the lobes first, which are situated on the boundary of

the stability region. If the tangent of the right lobe involved

in the intersection is steeper at the intersection point than the

tangent of the hyperbola crossing the afore mentioned point, it

implies that there is a local optimum with respect to the maximal

MRR in that point. If this holds, small increase of the spindle

speed does lead to lower MRRs. In order to prove, that the local

optimum point always can be found in the intersection point of

two adjacent lobes it is necessary to show that the derivative of

the right lobes in the intersection points tL is always bigger in

absolute value than the derivative of the hyperbolas crossing the

intersection points tH , since both are negative.The derivative of

a parametrically defined function can be computed according to

the following relation:

dw̃

dΩ̃
=

dw̃

dω̃
/

dΩ̃

dω̃
, (26)

which results: dw̃

dΩ̃
=

1+
4ζ2

˜
ω2

1
−1

1−

˜
ω2

1
˜
ω2

1
−1

1
2D

1+ 1
˜
ω2

1

πω̃1L2
2

1+
(

˜
ω2

1
−1)

2

4
˜
ω2

1
ζ2

+ 1
ω̃1L2

, where L2 = j−
arctan

˜
ω2

1
−1

2ω̃1ζ

π
.

The derivative of the hyperbolas has the following form:
dw̃

dΩ̃
= −kMRR

Ω̃2
.

One possible way of comparing the value of the two deriva-

tives can be done by taking their ratio:

t̃ =
tL

tH

. (27)

Tab. 2: Values of t̃for the first five lobes for given ζ values

Fig. 8. Distribution of t̂as a function of the parameters j and ζ
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Tab. 2. Values of t̃ for the first five lobes for given ζ values

ζ = 0.001 ζ = 0.003 ζ = 0.005 ζ = 0.01 ζ = 0.03 ζ = 0.05 ζ = 0.1 ζ = 0.3 ζ = 0.5

1 1963,5200 654,5120 392,7010 184,0350 54,2178 28,9596 19,2903 6,0323 3,4364

2 1766,1300 587,9810 352,3140 157,4570 42,4071 20,9299 15,6276 4,1114 2,1579

j 3 1699,6800 565,0980 338,0990 144,4020 35,7763 16,3767 13,3790 3,0928 1,5616

4 1665,9500 553,1010 330,3860 135,0320 30,8665 13,0546 11,6537 2,4600 1,2183

5 1645,3100 545,4380 325,2430 127,3480 26,8790 10,3995 10,2676 2,0333 0,9967

Fig. 9. Representation of the regions tL > tH and tL < tH

Tab. 2 shows the values of t̃ for the first five lobes and certain

damping ratios. If the ratio number is greater than one: t̃ >

1, than the intersection point is a local optimum point for the

MRR. If t̃ < 1, than the hyperbola is steeper and the continuous

increase of the spindle speed would imply higher and higher

MRRs along the lobes.

The t values as a function of the parameters j and ζ are shown

in Fig. 8. The smaller the

damping ratio and the smaller the number of lobes, the higher

values for the ratio of derivatives we obtain. It is visible, that

for higher lobe numbers and stronger damping the ratio even

gets smaller than one, which necessitates to examine, for which

parameter region the statement about the local optimum holds.

This was done numerically in discreate points of j and ζ.

The evolution of the boundary between the two regions re-

minds on an exponential function, which is presented in Fig. 9.

Results show, that at least up to the value of ζ = 0.25 even in

small spindle speed regions the local optimum for the MRR will

be in the intersection point of two adjacent lobes.

Furthermore the observation was made, that in the high spin-

dle speed region the statement for the local optimum of the MRR

even holds for very high damping ratios. This is an important

finding, since there are CNC machines with high damping ra-

tios, for which these investigations can be of high importance.

5 Conclusion

In the model considered in this study an optimization was

done with respect to the maximal material removal rate along a

theoretical approach. The damping ratio region was determined,

for which the local optimum of the MRR are situated in the in-

tersection points of two adjacent lobes on the stability diagram.

For the conventional damping ratio region for CNC machines

the statement about the local optima referring to maximal MRR

always holds. It was found, that in the high spindle speed re-

gion the local optimum for the MRR even holds for very high

damping ratios, which is important for special highly damped

CNC machine tools. For the applied model for orthogonal cut-

ting the regenerative effects are taken into account. Besides this

regenerative effect there are much more parameters influencing

the stability properties of the cutting process, such as the excen-

tricity of the spindle, the ovality of the workpiece, eventually

material inhomogenieties and many more, which were not taken

into consideration in this study. It is a further goal to determine

the effect of the mentioned possible effects on the stability of

the turning process, because it is possible, that they have more

significant influence on the vibration amplitudes for machining

processes.
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4 1,00175 1,42409 0,30167 0,86911

5 1,00192 1,39241 0,24294 0,84113

ζ = 0.5

ω1 ω2 Ω̃ w̃

1 1,00150 2,08279 1,24155 2,31879

2 1,00238 1,75923 0,64622 1,78613

j 3 1,00292 1,64669 0,43984 1,64792

4 1,00327 1,58942 0,33416 1,59073

5 1,00352 1,55475 0,26970 1,56142
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