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Abstract

In this paper we investigated the dynamics of a thin, flat plate

placed in potential planar flow and attached by springs to the

wall. Furthermore, the centre of gravity of the plate was as-

sumed to move only perpendicular to the direction of the flow.

Thus, a two-degree-of-freedom oscillatory system was analysed,

whose natural frequencies depend on the flow velocity.

The equations of motion were derived for two cases: first, the

flow forces acting on the plate were determined using a quasi-

steady approach; in the second case, we used the formulas de-

rived by Theodorsen assuming unsteady potential flow. Finally,

we obtained and compared the stability charts for the two cases.
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1 Introduction

The presented investigations were motivated by the participi-

tation in a research project, whose aim was to develop a proce-

dure to determine the so-called flutter derivatives of bridge sec-

tions. Knowing the functions of these derivatives helps to pre-

dict or avoid the aerodynamic instability caused by flutter. The

phenomena of flutter, similarly to galloping, is a self-excited vi-

bration occurring in the case of flexibly supported bodies (like

slender bridges or cables) placed in some kind of steady flow

[1],[2]. The other large group of stability problems are induced

either by originally unsteady flow like buffeting or by such an

unsteady flow that is caused primarily by the geometry of the

body but not its motion, like in the case of vortex-shedding

[2],[4].

In the following we consider a thin, flat, rectangular plate of

length l and width B. The homogeneous plate has a mass m

and its cross-section seen in Fig. 1 can perform only planar mo-

tion. The support of the plate is modelled by a vertically placed

straight spring and a torsional one of stiffness kh and kα, respec-

tively. The springs attached to the centre of gravity (i.e. the

middle) of the plate are also assumed to have damping whose

coefficients are ch and cα in vertical and torsional directions, re-

spectively. The angular velocity of the plate is perpendicular to

the plane of the motion and the mass and the mass moment of

inertia is denoted by m and J, respectively.

The centre of gravity of the plate can move only vertically and

its displacement is denoted by h. Thus, the model has only two

degrees of freedom: the generalised coordinates are q1 = h and

the angle of the plate w.r.t. the horizontal plane, q2 = α. (If the

plate were the section of a bridge, h and α would be related to

its bending and torsion, respectively.) Furthermore, we assume

that the plate is in equilibrium when h = α = 0, that is the effect

of gravity is compensated by the initial elongation of the spring

kh.

Taking into consideration the previous assumptions, the equa-

tions of motion of the plate is described by

Mq̈ + Cmechq̇ + Kmechq = Qflow, (1)
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Fig. 1. Sketch of the flat plate model.

Fig. 2. The flow force acting on the plate.

where

M =

m 0

0 J

 ,Cmech =

ch 0

0 cα

 ,Kmech =

kh 0

0 kα

 (2)

are the coefficient matrices of the mechanical parameters and

Qflow is the generalised force determined by the flow.

In the following we consider the flow forces for two dif-

ferent cases: in the next section a quasi-steady flow model is

considered where the effect of the angular velocity of the plate

is neglected; afterwards, we apply the derived theoretical flow

forces acting on a thin, flat, infinite plate performing harmonic

(transversal or rotational) oscillations in a potential planar flow.

2 Quasi-steady potential flow

According to the theory of potential planar flows, the reduced

flow force acting on a section of length l of a flat plate having

vertical velocity ḣ (see Fig. 2) is the following:

P =

−P sin γ

P cos γ

 , P =
ρ

2
U2

rellB · 2π sin(α − γ), (3)

where Urel is the relative flow velocity and α−γ ≈ α−ḣ/U is the

angle of attack of Urel. That is, the flow force P is perpendicular

to the relative flow velocity.

If we consider the angular velocity α̇, too, then the virtual

power of the flow force yields

P · δvB/4 ≡ P ·

 − B
4
δα̇ sinα

δḣ + B
4
δα̇ cosα

 ≡
P

B

4
cos(α − γ) δα̇ + P cos γ︸︷︷︸

U/Urel

δḣ. (4)

Thus, the generalised force Qflow appearing on the right hand-

side of Eq. (1) is as follows:

Qflow =
ρ

2
U2

rellB · 2π

 U
Urel

sin(α − γ)
B
8

sin(2α − 2γ)

 ≈
ρ

2
lB · 2π

 −Uḣ + U2α

− B
4

Uḣ + B
4

U2α

 , (5)

where we assumed that Urel ≈ U and α − γ is small.

2.1 Linearised equations of motion

For the case of small ḣ and α, the equations of motion can be

linearised around h = 0 and α = 0. Introducing η = 4h/B and

τ = tω1 (ω1 =
√

kh/m) Eq. (1) can be rewritten in dimensionless

form:

η′′ + 2ζ1η
′ + η = 4µ(−uη′ + 4u2α),

α′′ + 2ζ2εα
′ + ε2α = 4ϑ(−uη′ + 4u2α) (6)

where ′ = d/dτ, furthermore, the dimensionless parameters are

defined as follows:

ζ1 =
ch

2
√

mkh

, ζ2 =
cα

2
√

Jkα
, ε =

ω2

ω1

≡

√
mkα

Jkh

, (7)

and

u =
U

Bω1

, µ =
ρlB2π

4m
, ϑ =

ρlB4π

64J
≡ µβ2,

β =
B

4ri

, ri =

√
J

m
. (8)

2.2 Stability analysis

Arranging the equations of motion of (Eq. 6) in matrix form

again, we obtain

q′′ + 2

ζ1 + 2µu 0

2ϑu ζ2ε

 q′ +

1 −16µu2

0 ε2 − 16ϑu2

 q = 0, (9)

where q = (η, α) is the vector of the dimensionless generalised

coordinates and u is the dimensionless flow velocity defined in

(8).

The characteristic polynom of Eq. (9) is∣∣∣∣∣∣∣ λ2 + 2(ζ1 + 2µu)λ + 1 −16µu2

4ϑuλ λ2 + 2ζ2ελ + ε2 − 16ϑu2

∣∣∣∣∣∣∣ ≡
λ4 + a3λ

3 + a2λ
2 + a1λ + a0, (10)

where

a3 = 2(ζ2ε + ζ1 + 2µu), (11a)

a2 = 1 + ε2 − 16ϑu2 + 4(ζ1 + 2µu)ζ2ε, (11b)

a1 = 2
(
ζ2ε + (ζ1 + 2µu)ε2 − 16ϑu2ζ1

)
, (11c)

a0 = ε2 − 16ϑu2. (11d)
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Fig. 3. The stability boundaries for the quasi-steady model.

The necessary and satisfactory condition of asymptotic stabil-

ity (i.e. Reλi < 0,∀i) is that the minors of the Hurwitz determi-

nant are positive:

Hi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 0 0 · · · 0

a2 a1 a0 0 · · · 0

a4 a3 a2 a1 · · · 0

...
...

...
. . .

...

a2i a2i−1 a2i−2 a2i−3 · · · ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

(i = 0, . . . , 4). (12)

In our case: H0 ≡ a0, Hi = a0H̃i, and H4 = H3. Thus, the

following inequalities must hold:

a0 > 0⇒ u < ucr,0 ≡
ε
√

16ϑ
≡

ε

4β
√
µ
, (13a)

a1 > 0⇒ . . . , (13b)

a1a2 − a3a0 ≡ H̃2 > 0⇒ . . . , (13c)

a3H̃2 − a2
1 ≡ H̃3 > 0⇒ f (ε, u) > 0. (13d)

One can also show that it is sufficient to satisfy the inequalities

(Eq. 13a) and (Eq. 13d), i.e. a1 > 0 and H̃2 > 0 are weaker

conditions.

The critical flow velocity in SI dimension expressed from

(Eq. 13a) with the original system parameters is

Ucr,0 =
2

B

√
kα

ρlπ
. (14)

The boundary of the stability domain on the dimensionless

ε − u plane is determined by

ucr(ε) = min(ucr,0(ε), ucr,H3
(ε)), (15)

where ucr,H3
is obtained numerically from f (ε, ucr,H3

) = 0. The

boundary curves for various ζ = ζ1 = ζ2 parameters can be seen

in Fig. 3. The straight line represents ucr,0(ε) and the curves

above ε = 1 belong to ucr,H3
(ε).

Fig. 4. The sketch of a wing with aileron investigated by T

3 Unsteady potential flow

3.1 Theodorsen’s model

T [7] investigated a thin infinite wing with aileron

(see Fig. 4) and derived the flow forces acting on it for the

case when the wing carries out harmonic oscillations in vertical

and rotational directions, respectively. In his model the upwind

side was to the left and the wind velocity was noted by v. Fur-

thermore, α and h were assumed to be positive in the clockwise

and downwards directions, respectively, and the geometry was

dimensionless with the half chord b as reference unit. If we

choose a (the axis of rotation), xa (the centre of gravity of the

entire wing), and β (the angle of the aileron) to zero, then we

obtain a similar geometry shown in Fig. 1.

After long analytical calculations using velocity potentials

and determining the circulation, the aerodynamic forces and

moments can be expressed. Applying a = xa = β = 0, the

frequency-dependent force acting in the middle of a wing sec-

tion of length l in the direction of h is

P = −ρlb2(vπα̇ + πḧ) − 2πρlvbC

(
vα + ḣ +

b

2
α̇

)
, (16)

and the frequency-dependent moment acting in the direction of

α is

M = −ρlb2

(
πv

b

2
α̇ + π

b2

8
α̈

)
+ ρlvb2πC

(
vα + ḣ +

b

2
α̇

)
, (17)

where C = C(k) is a complex function of k = bω/v, the dimen-

sionless frequency of oscillation.

In order to get the expressions for the model in Fig. 1, first

of all we have to substitute v = U and b = B/2. Afterwards, if

we rotate Theodorsen’s model with 180◦, the upwind side and

direction of h will be identical to those of our models except

the direction of α. That is, we have to change the sign of α-s

in Eq. (16) to get the flow force acting on our flat plate when

it carries out harmonic oscillations. Similarly, we also have to

change the sign of h-s in Eq. (17). Finally, we get

P =
ρ

2
lB2π

{
B

4
(Uα̇ − ḧ) + C(k)

(
U2α − Uḣ +

B

4
Uα̇

)}
(18a)

M =
ρ

2
lB2π

{
B

4

(
−

B

4
Uα̇ −

B2

32
α̈

)
+

B

4
C(k)

(
U2α − Uḣ +

B

4
Uα̇

)}
(18b)
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Fig. 5. The graphs of F(k) and G(k).

3.2 The complex C(k) function

The complex C(k) function introduced in Eqs. (16)-(17) is

defined as follows:

C(k) =

∫ ∞
1

x
√

x2−1
e−ikxdx∫ ∞

1

x+1
√

x2−1
e−ikxdx

, (19)

which can be expressed by Bessel functions of the first and sec-

ond kind [2]. Moreover, according to S [4], it is ap-

proximately

C(k) ≈ 1 −
0.165k

k − 0.0455i
−

0.335k

k − 0.3i
≡ F(k) + iG(k), (20)

where

F(k) ≈ 1 −
0.165k2

k2 + 0.04552
−

0.335k2

k2 + 0.09
, (21a)

G(k) ≈ −
0.165 · 0.0455k

k2 + 0.04552
−

0.335 · 0.3k

k2 + 0.09
. (21b)

The graphs of F(k) and G(k) can be seen in Fig. 5.

3.3 The flutter derivatives

The interpretation of the complex C(k) function can be re-

vealed if we assume the generalised coordinates as complex

functions of time. Since the derivation of the flow forces was

carried out for harmonic transversal and rotational motions, this

means

qi(t) = q0
i eiωt, q̇i(t) = iωqi(t), q̈i(t) = −ω2qi(t). (22)

Thus,

C(k)qi(t) = F(k)qi +
G

ω
iωqi ≡ F(k)qi +

G

ω
q̇i, (23a)

C(k)q̇i(t) = F(k)q̇i − ωG(k)qi

(
≡ F(k)q̇i +

G

ω
q̈i

)
. (23b)

Substituting these expressions in formulas (Eq. 18a) and

(Eq. 18b), we obtain the generalised force vector from the flow:

Qflow ≡

 P

M

 =
ρ

2
lBU · 2π

 −F B
4

(1 + F + 4G
K

)

− B
4

F B2

16
(−1 + F + 4G

K
)

 q̇

+
ρ

2
lU2 · 2π

K2

4
+ KG B

4
(4F − KG)

B
4

KG B2

16
(4F − KG + K2

8
)

 q, (24)

where K = Bω/U ≡ 2k is another dimensionless form of the

frequency of oscillation.

Finally, the equations of motion for the unsteady potential

flow will have the following form:

Mq̈ + Cmechq̇ + Kmechq =
ρlBπ

4
U

 H1
B
4

H2

B
4

A1
B2

16
A2

 q̇+

ρlπ

4
U2

 H4
B
4

H3

B
4

A4
B2

16
A3

 q, (25)

where the following coefficients were introduced (flutter deriva-

tives):

A1 = H1 = −4F(k), (26a)

H2 = 4

(
1 + F(k) +

2G(k)

k

)
, (26b)

A2 = 4

(
−1 + F(k) +

2G(k)

k

)
, (26c)

H4 = 8kG(k) + 4k2, (26d)

A4 = 8kG(k), (26e)

H3 = 16F(k) − 8kG(k), (26f)

A3 = 16F(k) − 8kG(k) + 2k2. (26g)

For arbitrary bridge sections, the flutter derivatives Hi and Ai

can be determined experimentally or by numerical simulations

(see [1], [6], and [5]). Then, the dynamic behaviour of the bridge

can be predicted and the critical wind velocity can be calculated,

as described in the followings, for example.

3.4 Determining the stability boundaries

The dimensionless form of the equations of motion will be

similar to Eq. (9):

q′′ +

2ζ1 0

0 2ζ2ε

 q′ +

1 0

0 ε2

 q =

= u

µH1 µH2

ϑA1 ϑA2

 q′ + u2

µH4 µH3

ϑA4 ϑA3

 q. (27)

Putting q = exp λτ into Eq. (27), we obtain the characteristic

equation in the form of∣∣∣∣∣∣∣λ2 + (2ζ1 − µuH1)λ + 1 − µu2H4 − µuH2λ − µu2H3

−ϑuA1λ − ϑu2A4 λ2 + (2ζ2ε − ϑuA2)λ + ε2 − ϑu2A3

∣∣∣∣∣∣∣ ≡
λ4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0,

(28)

where

a0 = ε2 − (µε2H4 + ϑA3)u2 + (H4A3 − H3A4)µϑu4,

for example.

Although Eq. (28) is valid only for λ = iω, the limit case

ω → 0 (static stability loss) requires that a0 should be zero.

Since

ω→ 0⇔ k → 0⇒

G(k)→ 0

F(k)→ 1

⇒
H3, A3 → 16

H4, A4 → 0

⇒
a0 → ε2 − 16ϑu2, (29)
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Fig. 6. The stability boundaries of the unsteady model.

we get that a0 = 0 yields the same critical flow velocity as the

one we obtained in Eq. (13a) for the quasi-steady case.

Investigating the case ω > 0, the following two equations

(obtained for the imaginary and real parts) must be satisfied si-

multaneously:

−a3(ω, u)ω2 + a1(ω, u) = 0, (30)

ω4 − a2(ω, u)ω2 + a0(ω, u) = 0. (31)

Now, we have to fix some of the parameters (e.g. ζ1, ζ2, µ,

and ϑ) and find the value pairs of others (e.g. ε and u) for whom

the equations (30)-(31) are true.

A possible method for this if we determine ω0 for the case of

u = 0 from Eq. (30):

ω2
0 =

a1(ω, u)|u=0

a3(ω, u)|u=0

≡
ζ1ε

2 + ζ2ε

ζ1 + ζ2ε + π
2

(
ϑ
2
ζ1 + ζ2ε

) . (32)

Then, changing u with a small step, we can iterate to ω(u). Af-

terwards, we calculate ω̃ from Eq. (31). In the next step, if the

sign of ω̃ − ω has changed, we the decrease the step size and

change its sign, too, and modify the value of u with the new step

and iterate this process until ω̃ ≈ ω(u). The stability boundaries

obtained by this procedure can be seen in Fig. 6, which are

similar to the ones presented by K̈ and T for ε > 1

[3].

4 Conclusions

We have investigated a thin flat plate placed with an elastic

support in a potential planar flow. It is well-known that the flow

forces can cause flutter, which means that the system loses its

stability through vibrations.

Two cases have been considered: in the simpler case the flow

forces have been derived using quasi-steady assumption; in a

more precise model we have used the frequency-dependent flow

forces derived by Theodorsen taking into account the unsteadi-

ness of the potential flow, but only for a harmonically oscillating

plate. This represents the critical state between the decaying vi-

brations and the self-excited flutter.

The stability charts for the two cases are similar: if the nat-

ural frequency belonging to the rotating vibrational mode is

less then the natural frequency of the transversal mode shape

(ε = ω2/ω1 < 1), then static stability loss occurs (when

U > 2
√

kα/ρlπ/B) and flutter can occur only if ε > 1, in both

models. The difference is between the stability boundary for the

flutter: the quasi-steady model yields lower critical values of the

flow velocity for fixed ω2/ω1 ratio than the Theodorsen model.
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