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Abstract

Al 7075 alloy was equal and differential speed rolled accord-

ing to various deformation routes. In these routes the sheets

were rotated around different axes between subsequent passes

of rolling. The mechanical properties and the microstructure of

the specimens processed by various routes were compared. It

was found that while the strength values were irrespective of the

rolling routes, the ductility depends strongly on the deformation

method. The differences in the mechanical behavior were ex-

plained by the edge/screw character in the dislocation structure.
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1 Introduction

The reduction of grain size in polycrystalline metallic ma-

terials usually has a beneficial effect on mechanical proper-

ties resulting in high strength, low temperature of ductile-to-

brittle transition or improved superplastic formability [1–4]. Se-

vere plastic deformation (SPD) techniques are effective methods

in grain refinement without producing contamination or large

porosity in the ultrafine grained microstructures.

Differential speed rolling (DSR) is an SPD procedure that

uses rolls with equal diameters rotating at different speeds. The

application of this method results in large shear strains in metal-

lic sheets and therefore it can be used for production of ultrafine

grained metals [5–9]. An advantage of this technique is that it

enables continuous production in contrast to other SPD methods

such as equal channel angular pressing (ECAP) or high pres-

sure torsion (HPT). This favourable feature of DSR has attracted

large interest in recent years. Beside the grain refinement, a ho-

mogeneous and beneficial texture can be achieved by this tech-

nique, that may increase the ductility and formability of Al [10],

Ti [11] and Mg [12–14] alloys. The texture developed by DSR

was investigated by several authors.

The four different routes of DSR are illustrated in Fig. 1

[15, 16]. In the case of route UD no rotation of the sample

occurs, whereas for routes ND, RD, and TD the sample is ro-

tated by 180◦ around the normal, the rolling and the transverse

axes, respectively. The grain structure and the through-thickness

texture gradient produced by the different routes of DSR have

been studied in Al 1050 aluminium alloy [15, 16]. It was found

that DSR gives rise to the shear textures through the thickness

which are closer to the ideal shear texture if they are obtained

by changes in the shear direction. In a recently published pa-

per [17], the DSR method was compared with other SPD tech-

niques in terms of monotonity of deformation. It was estab-

lished that the monotonity of DSR is close to those of ECAP

and HPT methods yielding a similar effectiveness in grain re-

finement. The aim of the present work is to investigate the effect

of the various DSR routes on the microstructure and mechanical

properties of Al 7075 aluminium alloy.

Microstructure and mechanical properties 1112012 56 2

http://www.pp.bme.hu/me


Fig. 1. Various routes of DSR. In the case of UD the specimen is not rotated,

whereas in RD, TD, and ND routes the specimen is rotated by 180◦ around the

RD, TD and ND axes, respectively.

Tab. 1. Chemical composition of Al 7075 alloy

(in weight percent)

Al Zn Mg Cu Cr Fe Si Mn Ti

88–92 5.1–6.1 2.1–2.9 1.2–2.0 0.18–0.28 max

0.50

max

0.40

max

0.3

max

0.20

Tab. 2. The thickness reductions during various

passes of DSR

1. pass 2. pass 3. pass 4. pass

Initial thickness (mm) 10 7 5 3.5

Rolled thickness (mm) 7 5 3.5 2.5

Reduction (%) 30 28 30 28

Tab. 3. The area-weighted mean crystallite size

(< x >area), the dislocation density (ρ) and the pa-

rameter q characterizing the edge or screw character

of the dislocation structure determined by X-ray line

profile analysis.

< x >area (nm) ρ (1014 m−2) q

ESR, UD100 102±10 4.8±0.5 0.63±0.05

DSR, UD40 108±10 5.5±0.5 0.60±0.05

DSR, ND40 107±10 5.5±0.5 0.51±0.05

DSR, RD40 86±9 4.3±0.5 0.38±0.05

DSR, TD40 82±9 3.4±0.4 0.36±0.05

Fig. 2. Fitting of the X-ray diffraction pattern obtained for sample UD100

processed by ESR. The open circles and the solid line represent the measured

data and the fitted curves, respectively. The difference between the measured

and fitted data is also plotted at the bottom of the figure. The inset shows a part

of the diffractogram with higher magnification.

2 Experimental details

Al 7075 alloy specimens were processed by equal speed

rolling (ESR) and DSR using various rolling routes at room tem-

perature. The chemical composition of the alloy is presented in

Tab. 1.

Fig. 3. Mechanical properties of ESR- (UD100) and DSR-processed (UD40,

ND40, RD40, TD40) specimens. Rp0.2 – yield stress, Rm – ultimate strength, A

– elongation to failure

Specimens with the dimensions of 10 × 40 × 150 mm3 were

annealed at 450◦C for 2 hours and subsequently furnace cooled

before rolling. The diameter of the rolls was 140 mm. In the

case of ESR, the speed of both rolls was 10 rev/min while dur-

ing DSR the speeds of the two rolls were different: 10 and 4

rev/min. The specimens were rolled in four passes to the fi-

nal thickness of 2.5 mm. The values of thickness reduction are

listed for each pass in Tab. 2. The specimens were rolled using

five different routes. The specimen processed by ESR is denoted

as UD100. UD40, RD40, TD40 and ND40 denote DSR accord-
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Fig. 4. Bright and dark field TEM images of the microstructures for UD100 (a, b), UD40 (c,d) and TD40 (e,f) samples.
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ing to the four different routes shown in Fig. 1. No lubricant was

applied during rolling. Heat treatment was not carried out on the

rolled specimens before the study of the microstructure and the

mechanical behavior.

The samples for tensile test were prepared in the rolling direc-

tion of the sheets. The tensile tests were performed by an MTS

810 universal mechanical testing machine with constant cross

head velocity (2 mm/s) at room temperature.

The microstructure of the rolled samples were studied by a

Fei-Technai G2 type transmission electron microscope (TEM)

operating at 200 kV. The TEM specimens were prepared in

the plane perpendicular to the rolling direction by mechanical

thinning and subsequent precision ion polishing till perforation.

Moreover, TD40 sample was studied by scanning transmission

electron microscope (STEM) technique on the same equipment.

The rolled samples were electropolished and the microstruc-

ture was studied by X-ray line profile analysis. The X-ray line

profiles were measured by a special high-resolution diffractome-

ter (Nonius FR591) with CuKα1 radiation (λ=0.15406 nm) in

the centre of the cross section of the sheets. The X-ray line pro-

files were evaluated by the Convolutional Multiple Whole Pro-

file (CMWP) fitting method [18]. In this method, the experimen-

tal pattern is fitted by the convolution of the instrumental pattern

and the theoretical size and strain line profiles. The theoretical

profile functions used in this fitting procedure are calculated on

the basis of a model of the microstructure, where the crystallites

have spherical shape and log-normal size distribution, and the

lattice strains are assumed to be caused by dislocations. As an

example, the fitting for the sample processed by ESR is shown in

Fig. 2. The open circles and the solid line represent the measured

data and the fitted curves, respectively. The difference between

the measured and fitted data is also plotted at the bottom of the

figure. The area-weighted mean crystallite size (< x >area), the

dislocation density (ρ) and the parameter q characterizing the

edge or screw character of the dislocation structure were deter-

mined from the fitting and listed in Tab. 3. The value of< x >area

is calculated as < x >area= m × exp(2.5σ2), where m and σ are

the median and the lognormal variance of the size distribution

of crystallites. The parameter q was also obtained from the fit-

ting that characterizes the type of dislocations: edge or screw or

mixed. In the case of Al for pure edge and screw dislocations

the values of q are 0.36 and 1.33, respectively. For a dislocation

structure having mixed character the value of q is between these

limiting cases.

3 Results and discussion

The yield and tensile strength values as well as the elongation

to failure for UD100, UD40, RD40, TD40 and ND40 samples

were determined from the tensile stress-strain data and plotted

in Fig. 3. The yield and tensile strength values were around 300

and 320 MPa, respectively. The results show that the strength

increment due to rolling is nearly independent of the type of the

rolling and the DSR routes. In contrast to this, the elongation to

failure shows relatively large differences. The ESR-processed

material was the most ductile, while the specimens deformed by

DSR exhibited lower elongation to failure. The samples pro-

duced by routes UD and ND have the highest ductility among

the ESR-processed samples. The routes RD and TD resulted in

significantly lower ductility than routes UD and ND. The small-

est elongation to failure was under one percent as obtained for

the sample processed by route TD.

Selected TEM images for samples UD100, UD40 and TD40

can be seen in Fig. 4. Contrary to the various ductility of these

samples, the TEM results show no significant differences be-

tween the microstructures. The average grain size was 400-500

nm for all the studied samples. The SEM image in Fig. 5 shows

a precipitated microstructure in sample TD40. The precipitates

were identified by X-ray diffraction as hexagonal MgZn2 (η′/η

precipitates). The X-ray diffraction patterns did not reveal dif-

ferences in the structure and size of precipitates in the samples

processed by various routes of rolling.

The mean crystallite size and the dislocation density obtained

by X-ray diffraction line profile analysis can be seen in Tab. 3.

The results show that the samples produced by routes RD and

TD of DSR have slightly smaller crystallite size and lower dis-

location density than in the specimens processed by routes UD

and ND or by ESR. The character of dislocations is rather edge

for all the studied samples as revealed by the values of q pa-

rameter that are smaller than the arithmetic average (0.85) of the

q values calculated for pure edge and screw cases (see Tab. 3).

The edge character of the dislocation structure is stronger for the

specimens produced by routes RD and TD than in the samples

processed by routes UD and ND or by ESR. This experimental

evidence can explain the smaller ductility of the former samples

as follows.

The Al-7xxx alloys usually contain Guinier-Preston (GP)

zones and/or η
′

/η precipitates. These precipitates hinder dislo-

cation glide beside other obstacles such as grain boundaries and

Lomer-Cottrell locks. During deformation dislocation pile-ups

form at these glide obstacles and the high stresses emerging at

pile-ups are often responsible for crack initiation that may yield

failure of the sample. Screw or edge dislocations captured in

pile-ups can escape by cross-slip or climb mechanism, respec-

tively. As during deformation at room temperature cross-slip

occurs much easier than climb, therefore the plasticity is less

obstructed by the glide obstacles if the dislocation structure has

rather screw character. For the studied samples, the stronger

edge character of dislocations in the specimens processed by

asymmetric RD and TD routes may explain the smaller ductility

of these samples.

4 Conclusions

In the present study Al 7075 alloy was symmetrically and

asymmetrically rolled according to different deformation routes.

The effect of the rolling route on the microstructure and the me-

chanical properties were investigated. The results can be sum-
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Fig. 5. STEM image of the microstructure for TD40 sample.

marized as follows:

1 Both yield and tensile strength values were irrespective of the

rolling routes.

2 At the same time, the ductility showed significant differ-

ences for the samples processed by various ways of rolling.

The sample processed by ESR exhibited the highest ductility.

Among the asymmetrically rolled specimens, routes RD and

TD yielded lower elongation to failure than routes UD and

ND.

3 The differences in ductility were explained by the variation

of the edge/screw character of the dislocation structure. The

stronger edge character resulted in more difficult escape of

dislocations from pile-ups leading to easier cracking during

tensile testing.
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