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Abstract

In this paper specimen level measurements and finite element

simulations are introduced in order to study the thermal be-

haviour of a pin and wheel sliding contact configuration. The

pin-like specimen is processed from cast iron and models the lo-

cal contact of a railway brake block and wheel tire. The sliding

contact is treated in the framework of a 3 dimensional problem

in order to achieve reliable results. The paper also treats with

the heat partition problem by distributed heat source and mov-

ing heat source models. The results are compared to measured

datas and show that the classical heat partition approach is not

valid for the friction pair examined i.e. the contact. However

authors determine the exact heat partition ratio by an iterative

approach and give explanations on the experienced temperature

differences.
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1 Introduction

In spite of the fact that the first appearance of railway tech-

nology dates back to the 16th century, the intensive development

has not stopped nowadays. Approaching the railway vehicles

from the viewpoint of braking, frictional heat generation is an

important central problem. As it is well-known the heat gener-

ated by friction -which evolves between two deformable solid

bodies having nonzero sliding velocity on the contact spot- is

able to drastically change the mechanical and wear behavior of

the friction parts. It means that the deformation and stress state

is strongly modified by the heat generation, which exerts sig-

nificant influence also on type and value of wear. The momen-

tary temperature rise of 50-500◦C can result thermal stresses,

changed material properties, unbalanced friction coefficients,

severe wear and further thermal, frictional and dynamical in-

stabilities. These effects and they connections generate an in-

creasing research activity in the field of measurements [1–3] and

especially in numerical modeling [4–6]. This paper focuses on

a thermal problem, where the temperature rise has crucial con-

sequences on the safe run. The mentioned frictional contact is

characteristic between the wheel and the brake block and re-

lease on the large number of systems used in the railway in-

dustry. In the sizing of this part it is essential to take into

consideration the long braking time, high brake block forces,

which generally cause intensive wear and extreme high temper-

atures in the proximity of the contacting interfaces. This inter-

relation is thoroughly studied in the literature. In [7] Verners-

son examines the braking process realizing between the brake

block/wheel contact. He has found that the measured temper-

ature changes, which starts the evaluation of hot spots on the

wheel surface. They found correlation with the measured sur-

face roughness. Vernersson in [8] gives the numerical explana-

tion of the measured hot spots by contact and thermal finite el-

ement (FE) simulations and also give some results for the wear

phenomena. However the final conclusions are not complete

and the main conclusion of the work is the necessity of three

dimensional models in the analysis.

The main motivation for this study is the desire to understand

and simulate the thermal behavior of a pin on wheel configu-
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ration representing the local behavior of a brake block / wheel

sliding contact. The reasons why authors use pins instead of

real braking block during the experimental and numerical ex-

aminations are the clear and transparent results. The tempera-

ture distributions and the heat partitions are identified by steady

and transient calculations and authors prove that the heat parti-

tion varies during warming. The calculations also reveal that in

a thermal system containing contacting partners with high rota-

tion speed, the simple heat partition theory is not valid and can-

not be used for precise estimation of the temperatures arising in

the proximity of the contacting surfaces.

2 Experiments

The tests were performed at the Laboratory of Budapest Tech-

nical University and Economics (BUTE) at the Department of

Railway Vehicles and Vehicle System Analysis. The picture of

the testing rig can be seen in Fig. 1. The examined specimen

(pin) was processed of a high phosphor content P14 cast iron

brake block with the specimen length of 80 mm. The cross sec-

tion of the specimen had nominal dimensions of 10 × 5 mm.

The specimen connected to pre-prepared specimen holder (see

Fig. 2 and Fig. 3) which in the fastening was realized by two

screws. The material of the specimen holder was S235JR ISO

standard steel. In the tests the pin was pushed against the jacket

of a rotating wheel which had the diameter of 243 mm and width

of 35 mm. The tangential and normal force components were

measured by force sensors (2000 N MIKI with 2 mV/V cell pa-

rameter) while the temperature change was registered by thermo

couples on the pin side and by laser technique on the rotating

wheel side.

The applied angular velocity was 14.6 1/s, which is identical

with the speed of 40.14 km/h (11.15 m/s). The nominal value

of the applied constant normal load (100 N) was chosen in order

to ensure the average contact pressure of 2 MPa. Considering

the real structural level brake shoes this value corresponds with

about 4000 N braking force which is representing average value

in a general application.

The testing rig consists of an electric motor which drives the

shaft of the wheel by a drive-belt. The shaft is directly connected

to the wheel and is able to rotate it between 0 and 25 1/s angular

velocity. The examined pin-like specimen can be pushed against

the sliding cylindrical surface with the normal force of 0 and

2000 N adjusted by a hydraulic cylinder. The specimen holder

is supported by two bearings and a suspension link system. The

schematic illustration of the tested configuration can be seen in

Fig. 2. In the figure just the sixth of the wheel is shown.

The main components of the specimen holder are depicted

in Fig. 3. The orientation of the coordinate system is indicated

in the figure in order to ensure full understanding compared to

Fig. 2. The exploded view contains the locations where the tem-

perature measurements were carried out by thermocouples. The

3rd measured point -where the maximal temperature is expected-

was located 3 mm till the end of the pin in the middle of the

Fig. 1. General view of the testing rig

Fig. 2. Schematic description of the tested configuration

Fig. 3. Main component of the specimen holder.

10 mm width.

The measurement started by increasing the angular velocity of

the wheel to a prescribed value. Then the pin side was pushed
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towards the cylindrical surface of the wheel made of steel un-

til the intended load value was reached. During the measure-

ment the required value was adjusted by manual interventions.

The interventions can clearly be seen in the measured results.

The test duration was about 800 s, which contains the uploading

phase and the cool-down phase, which are always highlighted

by shadowing in the resulted figures. The time history of the

measured normal force is shown in Fig. 4. The figure shows the

main time values, when drastical change can be observed in the

force value due to the interventions mentioned.

Fig. 4. Measured normal force vs. time curve and its average

The measured tangential force can not be evaluated due to the

high fluctuation. The fluctuation might be the consequence of

dynamical vibration of the pin like specimen. This vibration is

general in steel-steel contact and generally accompanied with

high-pitched voice, which was experienced during the measure-

ments.

The temperatures measured with the thermocouples in the lo-

cations indicated in Fig. 3 can be seen in Fig. 5.

Fig. 5. Measured temperatures

It can be seen that the measured temperature near to the con-

tact surface is about 400◦C. The heat conduction is importantly

reduced by the contact of the components, so the temperature

at the 2nd thermocouple is about 120 ◦C. However there is no

significant difference in the time variation tendencies of the 2nd

and 1st thermocouples temperatures. It can also be seen that the

variation in temperature characteristically follows the variation

in normal force value however 10-20 s time delay is present be-

tween them. The changes in the normal force (in the middle of

the test) cause smaller changes in the 2nd and 1st measured tem-

peratures in comparison with the 3rd one. The temperature of

the wheel is measured in every 201s in the spot shown in Fig. 2

by using laser temperature tester. The time of the measured tem-

peratures is depicted in Fig. 6.

Fig. 6. Wheel rim temperature

It is also evident that the temperatures do not follow the fluc-

tuation of normal force, as it is found on the locations of the

specimen holder. However the low temperature continuously

increase to 55◦C which is much less than the temperatures mea-

sured in any other location.

3 FE simulation

In order to complement the measured force and temperature

results finite element simulations have been carried out using

commercial finite element software MSC. Marc [9]. The model

takes into account the main influencing parameters like the tem-

perature dependent material properties, the friction coefficient,

and the varying contact heat transfer coefficients (this is the re-

ciprocal of the contact resistance). The simulations partly focus

on the widely accepted concept about the equality of the contact

temperatures between sliding bodies, however the experiments

show that the heat partition may change upon time under differ-

ent thermal circumstances. Then the exact heat partition values

are identified by using the test results and are validated by a

moving heat source model.

3.1 Thermal model

In order to compute the temperature distribution for the tested

configuration shown in Fig. 2, the construction is divided into

two separate parts. The first part contains the specimen and its

connecting elements while the other part includes the wheel and

the driving shaft. The meshed parts can be seen in Fig. 7.

The specimen model has 80858 tetrahedron elements while the

wheel model contains 80238 ones. The applied material proper-
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Fig. 7. Separate FE models for thermal analyzes using the pin model (a) and

the wheel model (b)

Fig. 8. Temperature dependent specific heat and thermal conductivity of the

tested pin [10]

ties –identified by separate tests- can be seen in Tab. 1. The tem-

perature dependent material properties for the specimen have

been shown in separate figures according to Tab. 1.

The ambient air temperature was equal to 32◦C. The heat

transfer coefficient between the outer surfaces of the specimen

model is represented by the widely applied 5 W/m2·K value for

air at rest. However the rotating wheel possesses higher heat

transfer coefficient, which was varied according to the chang-

ing peripheral speed of the wheel. The numerical values of the

applied coefficients (for part 2) are shown in Fig. 9.

The parts of the FE models are built up independently, thus

it is required to define thermal (rigid) contact condition. The

connection can rapidly be accomplished by the built in contact

parameter called contact heat transfer coefficient. This param-

Tab. 1. Applied material properties [10] Tab. 1

Specimen Wheel Other parts

Elastic modulus [GPa] 102 200 200

Poisson ratio [-] 0.25 0.3 0.3

Density [kg/m3] 7150 7860 7860

Thermal conductivity [W/m·K] See Fig. 8 52 52

Specific heat [J/kg·K] See Fig. 8 486 486

Therm. expansion coeff. [1/K] 1.3·10−5 1.3·10−5 1.3·10−5

Initial temperature [oC] 32 32 32

Fig. 9. Applied heat transfer coefficients

eter needs to be given for every contact relation separately. In

our models we distinguish direct and indirect contact relations.

In the case of direct connections the heat transfer is realized by

steel-steel contact, which represents more continuity than the in-

direct connection, when the heat transfer is disturbed by air gaps

which are approximately some tenth of mm. Fig. 10 represents

the contact types.

Fig. 10. Contact types for identifying the heat transfer coefficients

In the wheel model the only contact is assumed to be direct

due to the clear steel-steel connection. The typical indirect con-

tact is the heat transfer which is disturbed by an air gap between

the solid partners. In our calculation the heat transfer coefficient

for directs contact was examined as 5000 W/m2, while for the

indirect one as 1000 W/m2.
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The applied heat flux density has been calculated by the equa-

tion of frictional heat generation as follows:

q = µpv = µ
F

A
v, (1)

where q is the heat flux density, µ is the coefficient of friction

realized in the sliding contact, p is the contact pressure (now

uniform) and v is the sliding speed in the contact, while F rep-

resents the normal force acting between the contacting surfaces

and A is the nominal surface area computed with the knowledge

of the cross section of the rectangular shaped pin like specimen.

The temperature dependence of the coefficient of sliding friction

is shown in Fig. 11.

Fig. 11. Temperature dependent coefficient of friction [10]

The total heat flow generated (Q) can be computed by consid-

ering areas of the heated surfaces as

Q = qA = µFv, (2)

In this paper authors apply the heat flux density as a thermal

load. The applied value is computed by Eq. (1) but in the equa-

tion the coefficient of friction is temperature dependent (from

Fig. 11) and also the normal force varies with time (according

to the average value given in Fig. 4). The computed heat flux

density can be seen in Fig. 12. The figure also shows the heat

flux density calculated by constant coefficient of friction. Its

value was µ = 0.38 corresponding to the contact at T = 200◦C

(see Fig. 11)

Fig. 12. Computed heat flux density

3.2 Heat partition based on contact temperature equiva-

lence

In spite of the fact that the total heat flux can be easily computed

by Eq. (1) and Eq. (2) it is essential to see that the individual

heat flux values, which heat up the specimen and the contacting

wheel surface cannot be directly derived from the above equa-

tions. According to the widely accepted theory, on the area of

sliding contact, the condition of the equal temperatures of the

partners must be fulfilled in every second, which condition de-

termines the partition of the heat flux. Unfortunately this heat

partition can be identified only by iterative computation. The

heat flux partition between the contacting partners is determined

by the following equations.

Qpin = Qx and qpin = qx, (3)

Qwheel = Q (1 − x) and qwheel = q
a

K
(1 − x) , (4)

where value x represents the heat partition on the specimen side,

a is the width of the specimen (10 mm) and K is the circumfer-

ential length of the wheel (763.4 mm). The application of Eq. (4)

is correct because heat partition -entering the wheel- heats a re-

stricted small strip of the wheel. In the current study the heat

partitions are determined by transient computations. In every

50 s the x heat partition value is adjusted in order to obtain the

temperature equivalence in the contact nodes. The heat parti-

tions resulted are depicted in Fig. 13 with the resulted equilib-

rium temperatures by using the distributed heat source model

detailed in section 3.4. It is important to see that the applied to-

tal heat flux was taken into consideration according to the curve

of Fig. 12.

Fig. 13. Computed heat partitions and contact temperatures

It can be observed that the heat partition does not change char-

acteristically in the time space examined. According to the com-

putations the maximum heat flux value at the specimen side is

1.1% of the total heat flux, while the minimum is about 0.45%.

The computed temperature values increase continuously and

characteristic changes can not be observed. However it is essen-

tial to see that the computed surface temperature does not reach
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the values of 400◦C which was measured near to the contact sur-

faces. The difference supposedly comes from the heat partition

theory. The theory states that the local contact temperature in a

thin layer must be equal on both sides of the contact. However

it is hard to imagine that the theory is valid when the specimen

gets continuous heat load while the contacting wheel surface re-

ceive heat input periodically. The temperature inequalities are

rather studied in the literature but important works [11, 12] can

be found with the same observation.

3.3 Real heat partition

The heat partition is also identified by comparing the temper-

atures to real test results. During the calculation we used the

same FE model with the time dependent heat flux density de-

picted in Fig. 12. However the heat partition is supposed to be

constant during the whole examined time interval for ensuring

the simple calculation and create transparent results. After many

consecutive, iterative loops, the best agreement between the cal-

culation and measurement is found with the x value of 10.5%

which is much higher than the value determined by the classical

temperature equivalence approach (1.1%). The temperature dis-

tributions are depicted in Fig. 14 for the specimen and its holder.

The comparison between the measured and computed tempera-

Fig. 14. Temperature distributions

tures -in the spots depicted in Fig. 3- is given in Fig. 15.

The computed results show relatively good agreement with

the measured temperatures in all points. In general we establish

Fig. 15. Comparison of measured and computed temperatures

Fig. 16. Calculated temperatures across the outer surface of the specimen

holder, the specimen clamper and the specimen

that the constant heat partition is not able to give realistic re-

sults for the rapid temperature changes, when the heat partition

intended to suddenly modify. In order to give a more general

overview on the problem, authors also depict the temperature

values on the outer surface of the specimen holder, the speci-

men clamper and the specimen in a single diagram, which can

be seen in Fig. 16. The picture clearly shows important differ-

ences on every separate part. The temperature steps are realized

by the relatively large contact resistance; however it is important

to note that the temperatures, depicted in Fig. 16 are collected on
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Fig. 17. Simulated temperature distributions

the surface and not on the location of thermocouples (see Fig. 3),

which is the reason of the different temperatures in Fig. 15 and

Fig. 16.

We also computed the wheel temperature with the same

heat partition and compared the results to the measured tem-

peratures shown in Fig. 6. The temperature distributions

can be seen in Fig. 17.

The comparison of the measured and calculated wheel rim

temperatures are shown in Fig. 18. The figure also gives results

for the two independently identified heat partitions (10.5 % and

1.1 %). It is to be noted that the applied heat load is computed

by Eq. (4).

Fig. 18. Comparison of measured and computed temperatures on the wheel

sliding surface (see Fig. 2)

It can be observed that the computed wheel rim temperature

is in good correlation with the measured temperature in the spot

shown in Fig. 2. It is also evident that the rim temperature is

almost independent of/from the varying heat flux into the rel-

atively large wheel volume. Furthermore the computation di-

rectly proves that the classical temperature equivalency based

heat partition theory is not valid in the examined configuration.

3.4 Moving heat source model

In the previous models the heat source was distributed along

the whole circumference of the wheel leading to the so called

distributed heat source model. In the real measurement the heat

source moves on the cylindrical surface of the wheel and period-

ically heats all the circumferential points. However the moving

heat source implicates periodical, local and transient tempera-

ture processes with definite peaks. The size of the peaks com-

pared to results received by using the distributed heat source

is identified in this part in order to prove that the general be-

haviour of the thermal conditions can be treated with the easier

distributed heat source model (if we do not intend to take into

consideration the local behaviour near to the contact surface)

revolution by revolution.

In order to achieve this goal the wheel model has completely

modeled and meshed with 152100 hexahedral elements. The

model of the wheel and the detailed view of the contact surface

are shown in Fig. 19.

Fig. 19. Moving heat source model of the wheel and the zoomed view of the

sliding contact location

Constant heat flux density, computed by Eq. (4) is used in

the model by assuming the friction coefficient value of 0.38 that

corresponds to the temperature of 200◦C. The applied heat flux

value is 8474000 W/m2. The circumferential length of the wheel

cylinder jacket has been divided into 78 surfaces, which are

loaded by the heat flux after another according to the rotation

speed of the wheel. The timing of the surface loading is accom-

plished by time tables. In order to compose the tables, firstly we

need to compute the time of a complete revolution as

t∗ =
K

v
=

dπ

v
=

2 × 121.5 × π

11.15 × 103
= 0.06846s (5)

The duration of the effective heat input of the heat source (due to

the discrete partition of the circumferencial length) is defined by

tstand =
t∗

78
=

0.06846

78
= 0.000877s (6)

where the value 78 in the denominator is the number of sur-

faces. The desired time step for the computation is 0.00002 s

which leads to 3423 increments per complete revolutions. One

example for the time table can be seen in Fig. 20.

The model contains 78 timing diagrams, which are identical

with the one given in Figure 20, but are shifted i × xtstand(where
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Fig. 20. Pulse like timing diagram example for the moving heat source

model

i is the series number of table) with respect to the generating

initial diagram.

The computation was repeated with the distributed heat

source model using constant heat flux density. The compari-

son of the temperature distributions of the two thermal models

is depicted in Fig. 21 for the first five revolutions.

Fig. 21. Comparison of the temperature vs. time diagrams belonging to the

distributed and moving heat source models

The temperature shows about 6◦C variation in every single

revolution and follows the law of transient characteristic of the

temperature decrease. Furthermore it can be concluded that the

distributed heat source model can be used instead of the more

complicated moving heat source model.

4 Conclusions

The present paper introduces the small scale level thermal ex-

amination of a pin-like specimen operating on a rotating cylinder

jacket. The measurement results are intended to reproduce by

FE simulations using the heat partition approach. The resulted

temperatures are deviating from the measured ones so the ex-

act heat partition characteristics are computed iteratively based

on the measured temperatures. The computations evidence that

the classic heat partition model which considers the tempera-

ture equality on the contact surfaces cannot be used to simulate

the behaviour of our specimen on cylinder jacket configuration

only with inaccuracy. We suppose that one of the main rea-

sons which cause the deviation is the high rotation speed i.e.

the high relative sliding speed of the wheel surface. The high

speed causes little heated volume (see Fig. 19) which change

their position (move in peripheral direction) and spend a very

short time under the heating interaction at a certain position.

During this little time interval the applied heat flux is unable

to significantly increase the wheel temperature (only 6◦C from

moving heat source model) which primarily penetrates into the

inner part of the cold wheel and only secondly transfers to the

neighbor environment. Large part of the friction generated heat

(almost 90%) enters into the wheel; however it is distributed in

a large volume, which causes low temperatures also near the

sliding interface. On the other hand the rest of the friction in-

duced heat warms continuously the pin, which results consider-

able temperature near to the interface. It is also proven that the

used distributed heat source model can be used to manage the

thermal problem and the results are confirmed by a moving heat

source model.
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