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Abstract

Basins of the periodic attractors of a harmonically excited

single spherical gas/vapour bubble were examined numerically.

As cavitation occurs in the low pressure level regions in engi-

neering applications, the ambient pressure was set slightly be-

low the vapour pressure. In this case the system is not strictly

dissipative and the bubble can grow infinitely for sufficiently

high pressure amplitudes and/or starting from large initial bub-

ble radii, consequently, the stable bubble motion is not guar-

anteed. For moderate excitation pressure amplitudes the ex-

act basins of attraction were determined via the computation of

the invariant manifolds of the unstable solutions. At sufficiently

large amplitudes transversal intersection of the manifolds can

take place, indicating the presence of a Smale horseshoe map

and the chaotic behaviour of system. The incidence of this kind

of chaotic motion was predicted by the small parameter pertur-

bation method of Melnikov.
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1 Introduction

In many hydraulic systems, in engineering applications cavi-

tation bubbles may form in the low pressure level regions. Prop-

agating toward the high pressure fluid domain, these bubbles can

collapse violently causing extensive erosion of the surfaces of

the hydraulic components, see e.g. Chan [1], Escaler [2,3]. One

way of gaining better understanding of the physics of cavitation

is to study the dynamics of a single gas/vapour bubble exposed

to harmonically varying pressure field. This phenomenon has

been extensively studied in the last century, both experimentally

and numerically, by applying high amplitude and high frequency

sound field to the liquid domain, see the comprehensive review

of Lauterborn [4].

The response of this type of harmonically excited bubble is

very feature-rich from dynamical point of view. Due to the time

varying pressure field, equilibrium points do not exist, conse-

quently, the simplest structure in the system is the periodic solu-

tion, whose period Tp is an integral multiple of the period of the

excitation T0, that is, Tp = kT0, k = 1, 2, · · · . Under parameter

variations these orbits can change its stability via bifurcations,

such as period doubling (PD) or saddle-node/fold (FL) bifurca-

tions. The simplest way to obtain information about the exist-

ing bifurcation curves (BC) is to integrate the system forward

in time using a simple initial value problem (IVP) solver, mean-

while, continuously monitoring the possible convergence to a

stable periodic/chaotic solution (attractor). One severe draw-

back of this method is that unstable structures cannot be com-

puted, which are essentially important in the understanding of

the dynamics, for instance to locate the basins of attractions. Al-

though, there are already well developed numerical techniques,

which are capable to compute the unstable orbits too treating

the problem as a boundary value problem (BVP), the majority

of the recent papers use the simple IVP method to study the bub-

ble behaviour via bifurcation diagrams, see Akhatov [5], Behnia

[6–8],Kafiabad [9], hence they often miss the unstable struc-

tures.

This study intends to compute the stable periodic orbits and its

basins of attraction at constant excitation frequency ω and with

varying pressure amplitude pA, employing the simplest and still
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widely used bubble model the Rayleigh-Plesset (RP) equation,

for details see Plesset [10]. In order to exploit the benefits of the

different solvers, the IVP and BVP methods were combined dur-

ing the investigation. For gaining a rough global picture about

the coexisting attractors of the system, numerous IVP computa-

tions were performed in a wide range of the control parameter

pA. Initiating the BVP solver (AUTO continuation and bifurca-

tion software, Doedel [11]) from these results, we shall see that

complete BCs of periodic orbits can be obtained under param-

eter variation including the unstable solutions and the detection

of bifurcation points as well.

The resulted unstable structures play significant role in the

determination of the basins of attraction related to the domains

enclosed by the invariant manifolds of the saddle-type solutions.

These are particularly important in the present study as our sys-

tem is not strictly dissipative due to the very low ambient pres-

sure, therefore, the bubble can grow infinitely for sufficiently

high pressure amplitudes or for large initial bubble radii, thus,

stable bubble motion is not guaranteed. The main aim of this

study is to determine basins of attraction of the most significant

stable solutions for moderate pressure amplitudes.

An additional application of the invariant manifolds is the de-

termination of the incidence of chaotic motion. Their transversal

intersection indicates the presence of a Smale horseshoe map.

However, this map is an evidence of chaos it is usually unstable

and impossible to compute even with sophisticated numerical al-

gorithms. The parameter value at which the intersection occurs

can be predicted by the small parameter perturbation method of

Melnikov, see Guckenheimer[12].

2 Mathematical modelling

The radial motion of the bubble wall is governed by the RP

eq. (for detailed description see Plesset [10]) defined as

3

2
Ṙ2 + RR̈ =

1

ρ

(
pV − p∞ (t) + pg0

(
R0

R

)3n

− 4µ
Ṙ

R
−

2σ

R

)
where R = R (t) is the bubble radius at time t, p∞ (t) is the pres-

sure far from the bubble consisting of a static and a periodic

component:

p∞ (t) = P∞ + pA sin (ωt) ,

where pA is the pressure amplitude and is the angular frequency.

The material properties of the liquid and the vapour phase were

computed with the Haar-Gallagher-Kell equation of state [13] at

temperature T∞ = 30◦C and pressure P∞ = 3768Pa (this value

will be explained later in this chapter) resulted 995.61kg/m3

liquid density, 7.973 · 10−4Ns/m2 liquid dynamic viscosity,

0.0712N/m surface tension and pV = 4242.7 Pa vapour pres-

sure. In the bubble interior the gas content exhibits in gen-

eral polytrophic state of change now with exponent n = 1

for simplicity (isothermal behaviour). The initial pressure pg0

and radius R0 determine the mass of the gas within the bubble:

m = 4pg0R3
0
/3RT∞, where R is the specific gas constant.

In the absence of excitation, the equilibrium radius RE of the

bubble can be computed from the following algebraic equation

(all time derivatives in the RP eq. are zero)

0 = pV − P∞ + pg0

(
R0

RE

)3n

−
2σ

RE

.

A typical equilibrium radius curve is presented in Fig. 1 for a

prescribed mass of gas (given pg0 and R0). It contains a turning

point which is usually referred to as Blake critical threshold, see

Blake [14]. At the critical point the derivative of the tension

(pV − P∞) with respect to the equilibrium radius RE is

d (pV − P∞)

dRE

∣∣∣∣∣
RE=Rc

= 3npg0

R3n
0

R3n+1
c

−
2σ

R2
c

= 0 (1)

If the initial gas radius R0 is chosen to be the critical radius Rc

then, according to equation (1), the initial gas pressure has to

obey the following relation: pg0 = 2/3nRc. In this case merely

the critical radius determines the amount of gas inside the bub-

ble. In our computations the critical radius was Rc = 10−4m,

which is the upper bound of the typical nuclei size (Brennen

[15]).

Fig. 1. The equilibrium radius RE curve as a function of the tension pV −

P∞ for a given amount of gas content. The vertical line denotes the applied

tension on the system. Rs
E

, Ru
E

and Rc are the stable, unstable and critical radii,

respectively. The vertical line denote the applied tension to the system.

As this study focuses on the cases when the tension is between

zero and the critical value, the tension was set to pV − P∞ =

(pV − P∞)c/2 = 474.7 Pa, marked by the solid vertical line in

Fig. 1, from which the static pressure is P∞ = 3768 Pa. Ob-

serve that we have two equilibrium radii; the upper one Ru
E

is

unstable while the lower one Rs
E

is stable. In what follows the

stable equilibrium radius will be denoted by RE , which, after

substituting the previously set numerical values, turns out to be

RE = 0.6527Rc. Introducing the dimensionless bubble radius

y1 = R/Rc, the dimensionless time τ = ωt and defining a dimen-

sionless velocity as y2 = y′1, where ′ stands for the derivative
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Fig. 2. The construction of the Poincaré map (right) by sampling the contin-

uous solution (left) at time instants τ = kT0, where k ∈ N. The present trajectory

is a period 3 solution as the Poincaré map returns to itself after 3 iterates, that is,

P3 (y0) = y0.

Fig. 3. Periodic attractors at constant ω = 2ω0 frequency. The control pa-

rameter is the pressure amplitude pA with 1Pa increment. The arabic numbers

denote the periods of the found attractors. The bifurcation curves marked by

asterisks are also computed with the AUTO continuation software including the

unstable solutions, see Fig. 4
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with respect to τ , the governing equations can be written as

y
′

1 = y2

y
′

2 =
K3

y1

−
K3A

y1

sin (τ) +
K4

y3n+1
1

−
K2

y2
1

−
K1y2

y2
1

−
3y2

2

2y2
1

(2)

where the parameters are

K1 =
4µω

pre f

, K2 =
2σ

Rc pre f

,

K3 =
pV − P∞

pre f

, K3A =
pA

pre f

, K4 =
pg0

pre f

where pre f = ρR2
cω

2 is a reference pressure. The linear resonant

frequency of the bubble is (Brennen [15])

ω0 =

√
3 (pV − P∞)

ρR2
E

+
4σ

ρR3
E

−
4µ2

ρ2R4
E

3 Results

Due to the explicit time dependence of the system, the prob-

lem must be treated in the whole 3 dimensional phase space

(y1, y2, τ). In spite of this difficulty the problem can be restricted

to a 2 dimensional iterated map since the phase space is periodic

in time with period T0, where T0 = 2π is the period of the exci-

tation, by defining a Poincaré map P : S → S (S ∈ R2 : (y1; y2)

is the Poincaré plane. The dynamics on the Poincaré plane S

is clearly seen in Fig. 2 in which a trajectory was computed be-

tween the dimensionless time τ = 0 − 3T0 with initial condition

y0 =
(
y0

1
; y0

2

)
. Observe that as the phase space is periodic in time,

the trajectory was projected back to τ = 0 at the time instant

τ = T0. Now the Poincaré map can be constructed by sampling

the continuous solution at time instants τ = kT0, where k ∈ N,

thus, the map of an arbitrary point y0 can be obtained by inte-

grating the system by one period T0 initiating from the specific

point. The end point of the solution is the map of y0 denoted by

P (y0), see Fig. 2 left. If a trajectory starting from y0 returns ex-

actly at the same point after N iterations (PN (y0) = y0) then the

solution is a periodic orbit whose period is exactly Tp = NT0.

For instance, Fig. 2 left and right presents the trajectory of a

period 3 solution and its corresponding Poincaré map, respec-

tively.

In order to obtain a global picture about the coexisting attrac-

tors, computations were performed with IVP solver at constant

ω = 2ω0 excitation frequency (first subharmonic) by varying the

pressure amplitude pA between 10 Pa and 5000 Pa as control

parameter. The solver was a standard 5th order Runge - Kutta

scheme with 4th order embedded error estimation. At each pres-

sure amplitude 10 simulations were performed in order to reveal

the coexisting attractors. After the convergence of a solution

64 points were recorded from the Poincaré plane. In Fig. 3 the

P (y1) values can be seen as a function of the control parame-

ter pA. The arabic numbers denote the periods of the attractors.

Observe, that there are no stable solutions above the pressure

amplitude 1700 Pa, although the maximum applied value was

Fig. 4. Bifurcation curves of AUTO computations initiated from the solution

marked by asterisks in Fig. 3 The black solid and red dashed curves are the

stable and unstable orbits, respectively. The black dots denote the fold (saddle-

node) bifurcations, while the crosses are period doubling bifurcation points. In

case of zero pressure amplitude as a limit case of the uppermost and lowermost

bifurcation curves one can obtain original equilibrium radii Rs
E

and Ru
E

. The

relevant bifurcation curves are labelled by bcps, where the value of p is the

period of the solution and s is a suitable serial number.

5000 Pa. As we mentioned in the Introduction this is due to the

dynamical nature of the system since it is non-strictly dissipa-

tive and the bubble can escape from stable domains. It is clear

from Fig. 3 that with increasing pressure amplitude the basins

of attraction gradually decrease and the chance of finding a sta-

ble solution becomes very difficult. This was the reason forcing

us to examine the basins, however, only for moderate pressure

amplitudes.

As we intend to compute the domains of attraction via the sta-

ble and unstable invariant manifolds of the saddle-type orbits,

finding these unstable solutions is very important. Such kind of

solution cannot be found applying a simple IVP solver even if

one integrates the system backward in time. To overcome this

problem the AUTO continuation software was employed which

is capable of computing whole bifurcation curves, including un-

stable solutions and bifurcation detection, under parameter vari-

ation treating the mathematical problem as a boundary value

problem. Because AUTO can handle only autonomous systems,

equation (2) has to be extended with two additional decoupled

ODEs as follows:

y
′

1 = y2

y
′

2 =
K3

y1

−
K3A

y1

y4 +
K4

y3n+1
1

−
K2

y2
1

−

−
K1y2

y2
1

− −
3y2

2

2y2
1

y
′

3 = y3+

+ y4 − y3

(
y2

3 + y2
4

)
y
′

4 = −y3 + y4 − y4

(
y2

3 + y2
4

)
,

where the solution of y4 is exactly sin (τ).

Initiating the AUTO software corresponding to the attractors
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marked by asterisks in Fig. 3, a series of complete BCs could

be computed including some period doubled curves, see Fig. 4

Moreover, the unstable BC corresponding to Ru
E

was also com-

puted because of its dominant role in global basin of attraction,

see the uppermost BC. In Fig. 4 the maximum of the solutions

ymax
1

is presented instead of the y1 part of the Poincaré plane due

to the special data storage mechanism of AUTO. The black solid

and red dashed curves are the stable and unstable solutions, re-

spectively. During the computations the bifurcation points were

detected from which the FL bifurcations are denoted by black

dots, while the PD bifurcations are marked by crosses. Each

BC which is relevant in the next discussion is labelled by bcps,

where the value of p is the period of the solution and s is a suit-

able serial number. Observe that the FL bifurcation divides a

BC into two parts. For instance, both bc31 and bc32 belong to

the same period 3 family but indicate the upper and the lower

branch, respectively. The PD bifurcation has no such effect, see

e.g. bc12 or bc31 which have stable and unstable parts as well.

With the aid of this notation we can refer to any solution by iden-

tifying the control parameter, for example, bc12 (150) means the

solution at pressure amplitude 150 Pa.

The above presented AUTO computations provide useful re-

sults to obtain the domains of attraction, inasmuch as they are

areas enclosed by a pair of stable invariant manifolds of a saddle-

type unstable solution. By definition the stable (unstable) mani-

fold W s (Wu) consists of points in the Poincaré plane from which

the solution tends to a fix point yE as the time goes to infinity

(minus infinity), more precisely, W s (yE) : (S : y→ yE , t → ∞),

Wu (yE) : (S : y→ yE , t → −∞).

In Fig. 5 left the stable manifold W s (black curve) and the

unstable manifold Wu (red curve) of the saddle-type fix point

bc11 (50) (red cross) can be seen. Due to the rather low pA =

50Pa pressure amplitude, the only other existing structure is the

period 1 attractor labelled by bc12 (50) (black dot). The basin of

this stable solution is the light blue area enclosed by the stable

manifolds, which is also the global domain of attraction of the

system. Any trajectory started out of this region will result in an

infinite growth of the bubble. The above mentioned notations in

the parentheses hold for all the figures in the present study.

In case of pressure amplitude pA = 150Pa the originally sta-

ble bc12 (50) fix point loses its stability via PD bifurcation re-

sulted in another saddle-type structure marked by bc12 (150), see

Fig. 5 right. The basin of the bifurcated bc22 (150) period 2 solu-

tion is defined by the stable manifolds of the fix point bc11 (150)

corresponding again to the bifurcation curve bc11, see Fig. 4 It

should be noted that the unstable manifolds of bc12 (150) have

particularly complex shape, moreover, the gradually increasing

oscillations of the manifolds belong to bc11 (150) indicating the

forthcoming transversal intersections of these manifolds.

At pressure amplitude pA = 219.6 Pa a stable bc31 and an

unstable bc32 period 3 solution appear via a FL bifurcation, see

Fig. 4 In Fig. 6 the basin of this new attractor is represented by

the green areas at pA = 250Pa as closed regions of the stable

Tab. 1. The area of the domain of attractions as a function of the pressure

amplitude pA.

pA 50Pa 150Pa 250Pa 450Pa 650Pa

Global 4.408 4.573 4.748 5.130 -

bc12 − bc22 4.408 4.573 4.706 - -

bc31 - - 0.042 0.195 0.249

manifolds of its counterpart bc32 (250). Observe that the three

distinct domains contain black dots which are the fix points of

the P3 map and periodically alternate under the influence of the

P1 map. Only one unstable manifold was computed, which

tends to the period 2 attractor of bc22 resulting in a peculiar

shape of the curve, see the red curve starting from bc32 (250)

in Fig. 6 The main consequence of the existence of this new

structure is that the global basin is the sum of the basin of the

period 3 attractor (green area) and the period 2 attractor (light

blue area).

Further increasing the pressure amplitude, the stable and un-

stable manifolds of bc11 will intersect each other. The tangency

occurs at approximately pA = 450Pa. One transversal inter-

section implies an infinite number of intersections resulting in a

Poincaré homoclinic structure. The most drastic consequence is

the presence of several Smale horseshoe maps, each containing

infinite numbers of periodic points with arbitrary high periods.

This dynamical behaviour is the evidence of the existence of

chaotic motion which is usually unstable explaining the absence

of chaotic attractor in Fig. 3 However, after this point the global

basin of attraction cannot be computed exactly due to its fractal

boundary, it may be possible to approximate via so called basin

cells which is beyond the scope of this paper, see the details in

(Nusse [16]).

Tab. 1 summarizes the computed basins with respect to the

pressure amplitude. Assuming that the global basin will not

change significantly from pressure amplitude 450Pa to 650Pa,

the second largest stable structure corresponding to bc31 has the

area of basin of approximately 1/20 times the global area of

basin. This implies that solution with higher periods have even

less domain of attraction.

As we mentioned previously the exact global domain of at-

traction cannot be computed above pA = 450Pa due to the ho-

moclinic tangency of the stable and unstable manifolds of bc11.

Because the computation of these invariant manifolds are very

resource demanding, it would be very convenient and useful to

predict somehow the parameter value at which the intersection

takes place. In the following we shall use the method of Mel-

nikov which is based on the perturbation of a planar homoclinic

orbit of a Hamiltonian system. If n = 1 (isothermal case) and in

the absence of excitation and viscosity equation Eq. (2) reduces
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Fig. 5. The global domain of attraction of the system (light blue area) at

pressure amplitude pA = 50 Pa (left) and pA = 150 Pa (right). The stable

W s and unstable Wu invariant manifolds are denoted by black and red curves,

respectively. The attractors are marked by black dots, while the unstable saddle-

type solutions denoted by red crosses.

Fig. 6. Basins of the period 3 attractor (green area) and the period 2 attractor

(light blue area). The black dots and red crosses are the stable and unstable fix

points of a PN map, respectively, where N is the period of the corresponding

solution. The global domain of attraction is the sum of these two basins.
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to

y
′

1 = f1 (y1, y2) = y2

y
′

2 = f2 (y1, y2) =
K3

y1

+
K4

y4
1

−
K2

y2
1

−
3y2

2

2y2
1

, (3)

which now form a Hamiltonian vector field with the Hamilto-

nian function defined as

H = 3K2y2
1 + 3y3

1y2
2 − 2K3y3

1 − 6K4lny1.

In this case the system (3) can be written as

y
′

1 =
∂H

∂y2

Q (y1, y2)

y
′

2 =
−∂H

∂y1

Q (y1, y2) ,

where Q = 1/6y3
1
. The stable and unstable manifolds of the

unstable equilibrium point Ru
E

of this unexcited time continuous

system coincide forming a homoclinic orbit
(
y0

1
, y0

2

)
. Next, the

excitation and the viscosity are included as small perturbation:

y
′

1 = f1 (y1, y2) + εg1 (y1, y2, τ)

y
′

2 = f2 (y1, y2) + εg2 (y1, y2, τ) ,

where

g1 = 0,

g2 =
−K3A

y1

sin (τ) −
K1y2

y2
1

.

Finally, we can define the Melnikov function as

M (τ0) =

∫ ∞

−∞

f1
(
y0

1,y
0
2

)
gb2

(
y0

1,y
0
2,τ + τ0

)
−

f2
(
y0

1,y
0
2

)
g1

(
y0

1,y
0
2,τ + τ0

)
dτ,

M (τ0) =

∫ ∞

−∞

y0
2

−K3A

y0
1

sin (τ + τ0) −
K1y0

2(
y0

1

)2

 τ
We should note, that M (τ0) is T0 = 2π-periodic and it pro-

vides a good measure of the separation of the manifolds. Thus,

if M (τ0) oscillates about zero, that is, M (τ0) = 0 for some

τ0 and dM(τ0)/dτ0 , 0, then it follows that there are infinite

transversal intersections of the invariant manifolds. Varying the

pressure amplitude pA and thus K3A, we could determine the

pressure amplitude at which the intersection occurs by continu-

ously monitoring the values of M (τ0).

However, ε must be sufficiently small, we set it to unity in or-

der to be consistent with the original system (2). Observe, that

it is not a real restriction since it is enough that εK3A and εK1 be

small. The parameter K1 = 6.1×10−3 was constant, whereas the

parameter K3A was varied between 3.6 × 10−5 and 1.6 × 10−2 in

the pressure range of 1 Pa and 450 Pa. Although, these param-

eter values are rather small the Melnikov method provides poor

estimation as it approximates the tangency at pressure amplitude

pA = 840 Pa. Therefore, in our system, this method is useless

for predicting the homoclinic tangency.

4 Conclusion

In this paper the exact domains of attraction of the stable

solutions of a harmonically excited bubble oscillator, the clas-

sical Rayleigh-Plesset equation, was examined. As these do-

mains were obtained as an enclosed area of the stable invari-

ant manifolds of the unstable saddle-type solutions, we used the

AUTO continuation software to compute bifurcation curves in-

cluding the unstable solutions. These simulations were initiated

from results obtained from a simple initial value problem solver.

The ambient pressure was set slightly below the vapour pressure

since cavitation occurs at low pressure level regions. In this case

the system is not strictly dissipative and the bubble can grow un-

limited under certain initial conditions, thus the computation of

the basins of attraction is very important.

A comprehensive analysis with a simple initial value problem

solver revealed that above the pressure amplitude pA = 1700 Pa

the finding of any stable structure becomes very difficult indicat-

ing that the area of the global basin is very small. Moreover, the

exact domains of attractions showed that the size of the basin of

the second largest period 3 structure is less than one-twentieth

of the global basin.

The global basin could be computed up to the pressure am-

plitude pA = 450 Pa. Above this point the stable and unstable

invariant manifolds intersect each other and the boundary of the

basin becomes fractal. The inception of the tangency was tried

to be predicted by the method of Melnikov based on the per-

turbation of a planar homoclinic orbit. Unfortunately it gave an

poor estimation (pA = 840Pa instead of pA = 450Pa).
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