
Cite this article as: Farago, D., Dombovari, Z. "Experimental Study on Free Vibratory Behavior of Nonlinear Structure", Periodica Polytechnica Mechanical 
Engineering, 63(2), pp. 91–99, 2019. https://doi.org/10.3311/PPme.12481

https://doi.org/10.3311/PPme.12481
Creative Commons Attribution b |91

Periodica Polytechnica Mechanical Engineering, 63(2), pp. 91–99, 2019

Experimental Study on Free Vibratory Behavior of Nonlinear 
Structure

Denes Farago1, Zoltan Dombovari1*

1 Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 
H-1111 Budapest, Műegyetem rkp. 3., Hungary

* Corresponding author, e-mail: dombovari@mm.bme.hu

Received: 01 May 2018, Accepted: 17 January 2019, Published online: 25 March 2019

Abstract

The basic behavior of free vibratory nonlinear system is investigated in this work. The main approach was to reveal the order of fitting 

necessary to properly approximate the actual behavior of a nonlinear mechanical system. Tests were performed in an experimental 

setup subjected to geometric hardening nonlinearities. The investigation showed that, it is essential to approximate the nonlinearity 

correctly. Low order approximation can result in large errors in the predicted amplitudes. The nonlinear static stiffness characteristics 

was measured and fit with polynomial describing function. The free vibratory response was deviated from the one calculated by cubic 

fitting. The presented higher order approximation of the amplitude-frequency parametric relation is revealed so that, in this particular 

example, seventh degree approximation is sufficiently closer to the experienced behavior. The analytical solution including the first 

and second order internal resonances were checked and compared with continuation results of the backbone curve. 
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1 Introduction
The main motivation of this work is to have an experi-
mental framework for validating possible future theoreti-
cal developments related to nonlinear structural dynamics. 
Nonlinearity, in general, influences the anyway standard 
modal characterization techniques resulting deviation 
in modeling and in predicting overall dynamic behavior 
of usually relatively large flexible structures. This is an 
important problem in airplane structure [1], in windmill 
pillars [2] or e.g. in machine tool dynamics [3, 4]. In many 
cases, the nonlinearities in question are weak, meaning that 
the natural frequencies and damping factors are not effected 
much. Rather, the reflected stiffness is affected through the 
concept of nonlinear normal modes (NNM) [5].

 Although the example presented in the paper is consid-
ered as one degree of freedom (DoF) mechanical system, 
the measurement of free vibratory response is essential to 
characterize large amplitude behavior of multi-DoF sys-
tems, too. Here the free vibratory characteristics are mea-
sured and theoretically determined through the concept of 
backbone curve [6, 7], which is essentially a projection of 
NNM on the extended space with frequency. 

In the literature, there are various attempts to build up 
a consistent framework for nonlinear mechanical systems 
similarly to the linear modal analysis. Rosenberg [8] has 
introduced the NNM’s of multi-DoF nonlinear systems 
as their mode reach the maximum in all modal coordi-
nates synchronously at the same time. The other, stricter 
definition is for conservative systems originated from 
Shaw and Pierre [9] who defined normal modes as invari-
ant manifolds. Szalai et al. [10] was using the concept of 
smoothest invariant manifold to describe the behavior of 
NNM’s. Kerschen et al. in [5] shows that non-conserva-
tive (damped) free systems are settled along the backbone 
curves, which is essentially the amplitude-frequency 
curves of the closed orbits on the invariant manifolds of 
the undamped systems. 

Large, roughly monolithic structures can undergo elastic 
but large amplitude dynamic deformation, when the effect 
of geometric nonlinearities come to the front as nonlinear-
ity in stiffness. Two basic stiffness characteristics can be 
distinguished, the so-called progressive characteristics (for 
hardening springs), and the degressive one (for softening 
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springs). The most noticeable sign of nonlinear vibra-
tions is that the (apparent) frequency of the free vibration 
depends on the amplitude. Therefore, the definition of the 
natural frequencies is changed to be strictly related to the 
characteristics of the local dynamic behavior on the linear 
subspace. The backbone curve (blue curve on Fig. 1) shows 
the relation between the amplitude and the frequency of 
the undamped free vibration of 1 DoF systems. The small 
amplitude vibration behaves as a simple linear one DoF 
system locally with linear stiffness, and its frequency is 
referred to as the natural angular frequency (ωn) even for 
the original nonlinear system. Forced, undamped one DoF 
vibrations have deviated “resonance” curves, which char-
acteristics depend on the driving force level. This actually, 
in one sense, corresponds to the very definition of a nonlin-
ear mechanical system. Moreover, multiple periodic solu-
tions can coexist for a specific driving frequency (black 
on Fig. 1), where continuous black and dashed curves rep-
resent the stable and the unstable time periodic forced 
responses of the nonlinear system, respectively. 

In this paper, we characterize the nonlinear system by 
measuring its nonlinear stiffness characteristics by per-
forming free vibratory experiments. Then, by assuming 
one DoF nonlinear dynamics, we compare the theoretical 
calculation based on the static stiffness characteristics. 
The tests can be considered as a preliminary experimen-
tal characterization of a nonlinear mechanical test bench, 
with which nonlinear modal test will be carried out. 

2 Experiments
The aim in this section was to see how accurate is the one 
DoF nonlinear model of the experimental setup considering 
its static stiffness nonlinearity and its linear modal behav-
ior. The tests were carried out on a simple beam structure, 
similar to the one in [11], which utilizes the geometric non-
linearities of a slender fixed beam segment (Fig. 2). 

2.1 Experimental structure
A simple square cross section beam is built with special sup-
ports (Fig. 2 (b)) to introduce stiff almost ideally fixed con-
strains with insignificant introduced damping in both ends. 
The square beam segment is weakened by a short slender 
steel plate asymmetrically. This plate is fixed to the lon-
ger and the shorter part of the beam with square cross sec-
tion (as shown on Fig. 2 (a), (b)). This structural weakening 
decreases the overall stiffness of the beam, and introduces 
nonlinear behavior. In this manner, larger displacements 
can be achieved (a few mm near the plate). The strain in the 
plate is large enough, to reach elastic nonlinear regions that 
cannot be neglected in the modeling. Using this elastic geo-
metric nonlinearity phenomenon we introduce progressive 
hardening behavior in the mechanical system.

2.2 Static characterization
As seen on Fig. 2 (a) (b), the load is applied at the same 
cross section of the beam, where the displacement is 
measured at point B. In the experiment, the displace-
ment was measured with 0.01 mm accuracy, and the load 
was achieved by hanging weights of different masses on 
a string attached to the beam (Fig. 2 (b)). The load was 
increased mostly with 10 N steps, up to 200 N. The mea-
surement was carried out both the positive and the negative 

Fig. 1 Nonlinear undamped resonance curves (stable: continuous black, 
unstable: dashed black) and the corresponding backbone curves (blue) 

determined for softening (a), and with hardening (b) cases.

Fig. 2 In (a) the schematic representation of the nonlinear structure is presented. In (b) the circumstances of the static stiffness characterization at 
B-B is presented, while the results are shown in (c) denoted by black dots along with a cubic polynomial fitting according to Eq. (1) (red line, ϵ is 

the relative error between the fit curve and the measurement).
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x direction. This was necessary, because the actual struc-
ture had some slight asymmetries. 

The direction of the load was not exactly parallel with 
the x axis. This angle (12.3 deg) was taken into consider-
ation, when the force was calculated in the direction of the 
measured displacement.

As we can see on Fig. 2, the measurement points seem-
ingly fit well on a 3rd order polynomial (see relative error ϵ), 
however the coefficient of x2 is quite large (in Eq. (1)), which 
means that the force-displacement is not exactly symmetric. 

R x x x x( ) ,= + +ρ ρ ρ1 2

2

3

3    (1)

where the constants are in Table 1. 

2.3 Small amplitude vibrations
The question arises, how accurate is the local tangent of 
R(x), because it really depends on the order of the fit poly-
nomial. Thus, local small amplitude measurement is car-
ried out to determine the local “linear” dynamic behavior 
of the beam. 

In this manner, we can define the local vibratory parame-
ters such as natural frequency ωn, damping factor ζ and the 
local linear tangent k of the stiffness characteristics R(x). 
This can be determined by impact testing applying rel-
atively small impulse excitation (peak force Fmax<100 N). 
However, excitation close to the point B, that is in inter-
est, is extremely difficult. Due to the flexibility of the struc-
ture, it is difficult to apply one distinct impact, without the 
back-swinging of low frequency modes causing multiple 
hits. This prevents good excitation over the frequency range 
of the first mode. To avoid this, a low resolution modal anal-
ysis was performed on the structure involving point B and 
E. The point E was chosen to avoid the assumingly node 
point at A. This way the HEE(ω) and HBE(ω) frequency 
response functions (FRFs) in receptance were measured as 
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where the pole is defined as s = − + −ω ζ ω ζn ni 1 2 . By 
using rational fraction polynomial (RFP) [12] method the 
spectral behavior (ωn , ζ) and the magnification behav-
ior can be calculated by using the mode shapes p, modal 
participation “vector” v and the modal scaling factor Q. 
The parameters are listed in Table 2. With Q and pB the 

reflected mass mBB and stiffness kBB between B excitation 
and B sensing points can be synthetized by using assump-
tion for proportional damped system as 
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then the synthesized FRF can have the following propor-
tionally damped model as 
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The reflected stiffness value kBB refers to the linear coef-
ficient ρ1 of R(x) in Eq. (1). We chose to accept kBB instead 
of ρ1 to describe local behavior, since the lowest the force 
the best is the determination of the local linear behavior. 
Moreover, the excitation of the impact spreads through the 
spectrum resulting in really slight excitation load in fre-
quency domain. In this manner we performed a reduced 
order least square fitting for only the nonlinear coeffi-
cients. In Table 3 slight changes can be seen compared 
to the complete fitting since only ρ2 and ρ3 were the only 
unknowns in the least square fitting. 

2.4 Large amplitude vibrations
In this section, we present two distinct large amplitude 
measurements. On the one hand, we used large sledge 
hammer to reach large amplitude oscillation in the nonlin-
ear test-rig. On the other hand, we present a preloaded test, 
where we intended to avoid the incapability of hammer 
excitation for determining direct responses. 

A response for impulse force triggered by sledge ham-
mer blow is presented in Fig. 3 (a). Since the excitation at 
B-B is impossible due to the flexibility, we have excited 
the nonlinear beam at point E again. The use of the sledge 
hammer was necessary to achieve extremely large exci-
tation load in a fairly stiff point and to have high ampli-
tude response at B. In this manner, acceptable low bound 

Table 1 Force-displacement coefficients in Eq. (1).

ρ1 ρ2 ρ3

18.72 N/mm 4.181 N/mm2 4.528 N/mm3

Table 2 Measured local modal parameters of the first mode with 
ǀǀpǀǀ = 1 and v = pE.

ωn ζ Q

52 Hz 0.567 % −8.1622i mm/N/s

p = [pE  pB]T m k

[0.083  0.996]T 0.196 kg 20870.42 N/m

Table 3 Force-displacement coefficients with corrected local parameters.

ρ1 = kBB ρ2 ρ3

20.18 N/mm 4.105 N/mm2 4.336 N/mm3
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excitation and its good coherence were ensured providing, 
methodology-wise good results. The evaluated “FRFs”s 
for different force levels (Fmax,t ) are presented in Fig. 3 (b). 
Mathematically speaking these functions are not applica-
ble as FRF’s, they are not representing, in any manner, 
linear and/or nonlinear behavior. This means, these qua-
si-”FRF”s can only present the appearance of nonlineari-
ties if it is recognizable at all. 

On the response presented in Fig. 3 (a) one can easily 
trace the varying frequencies of the first mode w.r.t. the 
vibration amplitude. It shows stiffening characteristics 
with higher frequencies for larger amplitudes. By compil-
ing the naive quasi-”FRF”s presented in Fig. 3 (b), one 
can see first moderate, then extreme drop in the main 
resonance peak. The larger excitation force spreads the 
response across the spectrum resulting in flat and strange 
(“smeared”) resonance, which clearly is the sign of higher 
frequency content in the decaying nonlinear response. 

Because of the inadequate methodology of modal anal-
ysis for large amplitude nonlinear vibration and the impos-
sible sense of direct hits at B-B, we decided to perform 
free vibratory test with initial preload. The preload was 
given similarly as in the static characteristic tests by sim-
ply using rope and hanging mass. This way the measure-
ment is repeatable, and the free vibratory behavior appears 
in the decaying motion of point B. Later this measurement 
can be compared with results simulated by using the B-B 
static characteristics in Eq. (1). 

Since the structure has a small amount of dissipa-
tion, the amplitude decreases over fairly long time. For 
this preload triggered free vibration we expect to see a 
change in the frequency as well, similar to the presented 
backbone curve. To show this, we divide the signal into 

shorter time windows. If we take the discrete Fourier 
transform (DFT) of these individual signal sections, we 
can find a peak around the first natural frequency, which 
is considered as the instantaneous frequency of the sec-
tion. However, for Δf = 1 Hz frequency steps in the DFT, 
we would need to take T =1/Δf =1 s time sections due to 
the Fourier uncertainty. But, the measured data is around 
1 s long, which cannot be divided into further sections. 
Moreover, if we want to achieve smaller frequency steps 
(higher precision), the time sections had to be even lon-
ger, so it means that this method cannot be used to get 
accurate results. 

Another approach to this problem includes the use of a 
digital filter. The vibrations of the first mode can be sepa-
rated with a low pass filter (Fig. 4 (a)).

The amplitude and the period of the filtered signal then 
can be read easily. The cut-off frequency is fc = 200 Hz, 
as we expect the frequency of the vibration to be roughly 
around the first natural frequency. The normalized cut-off 
frequency is 

φc

c

s /
. ,= =

f
f 2

0 049
    

(5)

which is a quite small value, as we used a large,  fs = 8192 Hz 
sampling rate. As seen on Fig. 4 (a) the lower frequency 
components pass without distortion in the amplitude, but 
the phase shift is significant. To avoid this problem, the 
signal is filtered in both the forward and reverse direc-
tions, which yields a zero-phase filtered signal. 

Fig. 4 (b) shows the acceleration signal of the first mode 
only. We can clearly distinguish each period of the signal, 
so the amplitude and the time period can be read system-
atically, as seen on Fig. 4 (c), (d). 

Fig. 3 (a) represents response at point B for the large blow by sledge hammer at point E and presents the frequency change for high (Th, fh) and for low 
(Tl, fl) amplitude regions. Panel (b) shows the quasi-”FRF”s for various impulse excitation.
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By using relations depicted in Fig. 4 (c), (d) one can 
plot free vibratory path in the frequency-amplitude dia-
gram (Fig. 5), actually formulating the measured back-
bone curve. Note that, linear system would be attenuated 
along a “vertical” line on this plot ending also at the (local) 
natural frequency. The plot clearly resembles the stiffen-
ing nonlinear response resonance shown in the sketch 
Fig. 1, although for convenience the acceleration ampli-
tude was used here w.r.t. the momentary frequency. 

In order to compare the results with the theory, the 
aim is to plot the result related to the amplitude depen-
dency in receptance frequency response function fash-
ion. Although, the multiplicative purpose of this nonlin-
ear receptance response with the excitation force cannot 
be applied in this nonlinear case. In Fig. 5 one can real-
ize two things. On the one hand, the expected behavior 
was measured, namely, small amplitude vibration has the 
“linear” natural frequency fn taken from the end of the 
free vibratory signal (see Fig. 4 (b)). On the other hand, 
the peak-to-peak amplitudes do not seem to be symmet-
ric, which can be the result of the asymmetry in the static 
stiffness measurement (see Fig. 2 (c)). 

3 Analytical approach
There are some methods to approximate the ampli-
tude dependency of the transient behavior of one DoF 

nonlinear mechanical oscillator. However, there is no 
exact method to derive an explicit closed form for the free 
vibratory motion for this system. 

To reach the asymmetry recognized in Fig. 2 (c) the sec-
ond order monomial is also included in the equation of 
motion, here: 

 x t x t x t x t x t( ) + ( ) + ( ) + ( ) + ( ) =2 02

2

2

3

3ζω ω µ µn n ,  
(6)

where µ2 = ρ2 / m and µ3 = ρ3 / m (m := mBB, see Eq. (3)) 
respectively. 

We use one form of asymptotic analysis method, namely, 
the Ljapunov-Poincaré method for periodic motion [13]. 
In order to ensure the applicability of the method to cal-
culate the vibration period T = 2/β, we consider undamped 
version of Eq. (6), where the actual angular vibration fre-
quency is given as the function of the nonlinear parameter 
µ =µ1 / ε1 =µ2 / ε2 as

β ω µ µ2 2

1

2

2: .n= + + +…h h    (7)

In Eq. (7), ε1 and ε2 parameters are chosen appropri-
ately. The basic idea of the calculation is to determine the 
time-periodic solution x(t) = x ( t +T ) as a series of the non-
linearity with 

x t x tj
j

j
( ) = ( )

=

∞

∑: .µ
0

    
(8)

Here each jth member of Eq. (8) satisfies the boundary 
condition xj(t) = xj ( t +T ) and by vanishing the internal 
resonances the hk’s (k ≥ 1) can be determined using the 
initial conditions x(0) = x0(0): =A and xj (0): = 0 ( j > 1) and 
x ̇j (0): = 0 (all j) for the undamped (ζ = 0) system Eq. (6). 
Internal resonances appears on the separated O (ε

k) equa-
tions as a resonant excitation, which provides essentially 
nonperiodic partial solutions xj Eq. (8), which have to be 
vanished by equating hj’s in Eq. (7). 

In Fig. 6 the results for cubic fitting is presented using 
data of Table 3. The analytical amplitude-frequency curves 

Fig. 4  (a) presents the low pass filter used, while (b) shows the filtered free vibratory motion after using constant preload. The (c) and (d) show the 
extracted amplitude and the corresponding frequency over time. 
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Fig. 5 The acceleration amplitude-frequency of the filtered signal.
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determined with the first β(h1) and with the combined first 
and second β(h1, h2) internal resonances do not really fit 
on the measured ones. The empirical backbone curve has 
larger curvature, which allows to conclude higher orders 
of the stiffness nonlinearity play an important role. 

In this manner higher order fittings (see Fig. 7 (a), (c)) 
were performed, with which the entire calculation can be 
repeated. The equation of motion assumed in the form 

 x t x t x t x tk
k

k

p

( ) + ( ) + ( ) + ( ) =
=
∑2 02

1

ζω ω µn n ,   (9)

where p is the order of the polynomial fitting and µk = µ εk , 
accordingly. Without presenting the partial steps, includ-
ing the first order internal resonance we can derive the fol-
lowing for the vibration frequency 
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While taking into account the second internal resonance 
the following long form is obtained:

Higher order fittings were performed (see Table 4) by 
keeping the local behavior with the determined linear 
stiffness kBB from Eq. (3). In Fig. 7 (a)-(c) one can real-
ize that the fittings still look adequate, but their coeffi-
cients change with convergence in low order coeffi-
cients (see Table 4). This obviously has an effect on the 
backbone curves. In Fig. 7 (b)-(d) the corresponding back-
bone curves are presented for first and combined first and 

second internal resonances related to Eq. (10) and Eq. (11), 
respectively. The 7th order polynomial fitting (Fig. 7 (d)) 
with both internal resonances follows the measurement 
well. A tiny fold can be realized on the calculated para-
metric curve, that suggests that the analytical formal-
ism allows, actually, to predict different local behavior. 
The measurement does not show this property, but in the 
higher frequency zone the growth is captured better. 

Surely, there is a convergence by increasing the order 
of the polynomial fitting (see Table 4), however, there is an 
arithmetical limit for this analytical methodology. Due to 
the large amount of measurement points in the static char-
acteristics, few other larger order fittings can be realized 
in order to see convergence on the backbone curves. This 
is checked in the next section, where we determine these 
backbone curves numerically, without dealing with inter-
nal resonances supposingly serving more accurate and 
convergent solutions. 

If we compare the analytical and the measurement results 
(Fig. 7 (b)-(d)), we can see that the linear (small amplitude 
vibration) frequencies are slightly different (1 Hz). This is 
likely the result of the fact that, between the linear and large 
amplitude measurements, the bolt preloads in the fixations 
were slightly modified. Aside of this, the measurement data 
and the analytical solution are quite similar, especially for 
the higher order static force-displacement approximation. 

Table 4 Coefficients of the fit force-displacement curves (see Fig. 8)

ρi (N/mmi) 5th 7th 11th

ρ1 := k 20.18 20.18 20.18

ρ2 6.251 8.365 8.863

ρ3 4.584 2.764 2.117

ρ4 −0.306 −0.821 −3.266

ρ5 −0.048 0.408 0.257

ρ6 - 0.028 0.014

ρ7 - −0.026 0.217

ρ8 - - −0.240

ρ9 - - −0.053

ρ10 - - 0.014

ρ11 - - 0.033

50 55 60 65 70 75 80
β (Hz)

A
(m

m
)

0
0.5
1.0
1.5
2.0
2.5
3.0

Fig. 6 The backbone curve determined by simple 3rd order equation 
of motion Eq. (6) by using 3rd order polynomial fitting as in Fig. 2 (c). 
Dashed curve related to β(h1), while continuous to β(h1, h2)(see Eq. (7)).
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4 Numerical Approach
Free vibratory response behavior is characterized with 
backbone curves, along which the mechanical system set-
tles down, slowly reaching zero amplitude oscillation with 
ωn natural frequency. It is essential to have a numerical 
method, with which the behavior of the free vibratory sys-
tem can be characterized to avoid performing vast amount 
of time domain simulations with various initial condi-
tions. Moreover, by using a general numerical method 
higher order approximation can be easily checked. Also, 
backbone curves are referring to the shape of the nonlin-
ear harmonic response behavior, that can be important 
to determine stationary behavior of machines including 
nonlinearities. 

The method presented in this part is based on continuation 
algorithms like auto [14], matcont [15], pdde-cont, knut 
[16] and dde-biftool [17]. These algorithms are capable 
of discretizing deterministic dynamical systems and trace 
special solutions in the phase space w.r.t. a given parameter. 
In this way, the behavior of the dynamics can be mapped 
through special objects in the phase space like equilibrium, 
periodic or heteroclinic orbits. To compile backbone curves 
a natural choice is to trace the undamped system for a given 
initial amplitude as a numerical counterpart of the asymp-
totic method described in the previous section. 

If the system is undamped closed orbits with a certain 
time period T are formed in the phase space. The above 

mentioned algorithms first rescale the system with the 
period T and then apply an interpolation scheme usually 
based on Lagrange polynomials. By describing the peri-
odic orbit with a concatenated segmented solution, sam-
pling at Legendre points, the dynamic system is projected 
to a set of impulse functions forming nonlinear algebraic 
system. This system for autonomous systems are not com-
plete due to the time invariance. To release this problem 
Poincaré phase condition can be used [17]. However, to 
find backbone curves the phase condition is replaced with 
a condition to select the amplitude in interest. 

Simply the condition can be given in the form for peak-
to-peak amplitude: 

max ( ) min ( ) .t
T

t
Tx t x t A= =− − =0 0 2 0   (12)

Although, its derivatives w.r.t. all state derivatives and 
parameters have to be given to the algorithms to deliver 
efficiently and accurately solutions with Newton-Raphson 
method. 

5 Conclusion
The result of this work has two folds. On one hand, we 
showed that the resemblance of the theoretically incorrect 
FRF (quasi-FRF measured with impulse excitation) to its 
harmonic response does not have any theoretical or prac-
tical relevance. The seemingly steep edge (e.g. thick black 
in Fig. 3 (b)) does not reveal a hysteretic behavior, it is 

Fig. 7 In (a) the actual 5th and 7th fitting are presented, while (b) shows the corresponding amplitude-frequency curves determined only for the first 
β(h1) (dashed) and for the combined first and second order internal resonances β(h1, h2) (continuous).
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