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Abstract

The investigation of arterial blood flow has always been an

important topic in physiology. Large proportion of the cardio-

vascular diseases (arteriosclerosis, vasoconstriction) affects the

arterial part of the circulatory system. Physiologists place huge

efforts in the improvement of the diagnosis and the treatment of

these diseases. During the last decades fluid mechanics has be-

come a powerful tool in the analysis of arterial blood flow. In

the current paper a numerical approach for the calculation of

one dimensional unsteady blood flow in the arterial network is

presented. The continuity and momentum equations are solved

using the method of characteristics (MOC). Furthermore a vis-

coelastic material model is applied to describe the behavior of

the arterial walls. The network model of the arterial system

is set up using 45 viscoelastic branches. The heart is modeled

using an unsteady volume flow rate boundary condition. Arte-

rioles and capillaries are treated as linear resistance boundary

conditions. The parameters of the viscoelastic material model

were fine-tuned by comparing the results of the calculation with

previously measured blood pressure curves. The resulting model

is capable for simulating arteriosclerosis in an arbitrary part of

the arterial network. The viscoelastic material model and the

calculation method are presented in detail. Results of the calcu-

lation are presented and discussed.
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1 Introduction

Simulating blood flow in the arterial network is a highly com-

plex task. It consists of numerous vessel branches with differ-

ent length, diameter and stiffness (compliance). There are also

several bifurcations in the system. Furthermore the arterial ves-

sel walls show a so called "bioviscoelastic" behavior (Monos

[11]). This property has two important effects. First, the arterial

wall deformation is a function of the transmural pressure and the

time. Hence the “history” of the wall has an effect on the current

state. Second, a hysteresis loop can be observed by loading and

unloading the vessel wall.

In the last decades several one dimensional network models

were introduced to describe blood flow mechanisms in the arter-

ies. However most of these models were solved using lumped

parameter methods like the impedance method (Avolio [3], Ster-

giopulos et al [15], Westerhof and Noordergraaf [19]). These

approaches are limited in terms of modeling wave propagation.

Loops in the network cannot be treated this way either. Dis-

tributed models were also used for modeling the arterial system.

MOC is a popular mathematical method in this field (Streeter

and Wylie [17], Halász [8]). Advantage of this method is that the

non-linear terms of the momentum equation are not neglected

like in the impedance method. Furthermore, the MOC ensures

the information to travel with the pulse wave velocity. Anliker

et al. [2] and Rockwell [14] used this method for modeling the

arterial network. In both works a tapered tube was defined for

this purpose. The effect of the side branches were modeled with

a continuous leakage applied on the tube. This basic model

was further developed by Stettler et al. [16]. However their

model consisted of only eight main arterial branches which is

too few for accurate blood flow modeling. Wang and Parker [18]

constructed an arterial network model containing 55 branches.

However the pulse wave velocity was assumed to be constant.

Also the viscoelasticity of the arterial vessel wall was neglected.

Other distributed models than the MOC were also used in re-

search work. Azer and Peskin [4] used a two-step Lax-Wendroff

method for their arterial network model. Their contribution is

interesting as far as they take the Womersley theory into account.

On the other hand the effect of the viscoelastic arterial vessel

Modeling blood flow in the arterial system 492011 55 1

http://www.pp.bme.hu/me


walls is neglected. Reymond et al [13] developed a method on

the basis of the arterial network from Stergiopulos et al [15]. A

finite difference method was used for calculating the blood flow

velocities and the pressures.

In the current paper the model network of the arterial system

is set up using the schematic diagram of Avolio [3]. The model

was modified and simplified, the resulting network model has 45

arterial branches. A viscoelastic material model is introduced –

the so called Stuart model is used for this purpose. To the best

of our knowledge this material model was not yet used for arte-

rial blood flow modeling. The describing equations of the Stuart

model are solved together with the continuity equation and the

one dimensional momentum equation using the MOC. The re-

sulting numerical model accurately describes blood flow in the

arterial system. The viscoelastic material model was validated in

Licskó and Bárdossy [10]. A sample venous network model was

created and calculated in Bárdossy and Halász [5]. The arterial

model network presented in the current paper is further develop-

ment of the previous publications. The human heart is modeled

as a volume-flow rate boundary condition. Arterioles and capil-

laries are taken into account as linear resistances. The resulting

blood pressure curves of the calculation show a fair agreement

with physiological data. Therefore the model is capable for sim-

ulating arteriosclerosis in an arbitrary part of the arterial system,

which is a new achievement in the research field. In the first cal-

culation series a gradual closure of the right external iliac was

investigated. The results are presented and analyzed from the

physiological point of view.

2 Methods

In order to create the one dimensional model of the arterial

network an appropriate numerical approach is needed. The De-

partment of Hydrodynamic Systems at the University of Tech-

nology and Economics developed a software (the so called Tran-

sient Simulator) for calculating one dimensional unsteady fluid

flow in pipe networks. Both lumped and distributed parame-

ter models can be solved using this algorithm. The lumped pa-

rameter solver is used for modeling parts like pumps, valves,

pressure- or mass flow sources. Using the distributed parame-

ter solver the long elastic pipes are modeled which connect the

lumped model parts. A one dimensional mesh is created along

the elastic pipes, in every node pressure and velocity are calcu-

lated and stored. The continuity equation and the one dimen-

sional momentum equation are defined for these inner nodes.

The loss term of the momentum equation is valid for laminar

flows. This system of partial differential equations is solved si-

multaneously using the MOC. The method is described in detail

by Streeter and Wylie [17] and Alastruey et al. [1]. The char-

acteristic grid is defined on the basis of the spatial resolution

(see Fig. 1). Pressure and velocity data are known in the inner

nodes L and R at timestep ti-1. Negative and positive charac-

teristic curves are launched from these nodes. At the intersec-

tion of these nodes (P) pressure and velocity can be evaluated.

Boundary conditions are satisfied with only one characteristic

curve (negative/positive) at the (upstream/downstream) end of

the tube. Pressure or velocity data can be applied as boundary

conditions.

Fig. 1. Characteristic grid used by the MOC.

One main advantage of MOC is the accurate representation of

pressure waves: during the calculation the information travels

exactly with the wave-propagation velocity between the nodes

of each pipe.

The Transient Simulator itself is mostly used for the calcula-

tion of unsteady flow in drinking water pipe networks. For in-

stance pressure waves after an abrupt pump failure can be well

estimated (Hős [9]). The software was also used for modeling

waste water flow in open channels. In the Transient Simulator

the Hooke law is applied for modeling the pipe walls. Blood

vessel walls cannot be described accurately using the Hooke

law since it neglects the time dependence of the deformation

and there are no hysteresis loops by repeatedly loading and

unloading the vessel wall. Therefore the next step was to ex-

tend the Transient Simulator with a viscoelastic material model.

The Stuart model was selected for this purpose since it is used

for modeling viscoelasticity in polymertechnics (Bodor and Vas

[7]). The schematic diagram of the Stuart model is shown in

Fig. 2. The Kelvin-Voigt element (ε2) represents viscoelastic

deformation while the elastic spring element (ε1) models the

elastic deformation component.

The describing equations of the Stuart model have to be com-

bined with the governing equations of the fluid flow. The fol-

lowing equations have to be solved simultaneously:

1. Momentum equation:

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
+ g

dh

dx
+

32ν

D2
v = 0 (1)

2. Modified continuity equation:

2
∂ε

∂t
+ 2v

∂ε

∂x
+ (2ε + 1)

∂v

∂x
= 0 (2)

3. Equations of the Stuart model:

pD0

2δ0
(2ε + 1) = E1ε1 (3)

pD0

2δ0
(2ε + 1) = E2ε2 + η2ε2 (4)
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ε = ε1 + ε2 (5)

where D0 and D are the initial and instantaneous diameters,

p transmural pressure, v axial velocity, h elevation, δ0 wall

thickness, ν kinematic viscosity, g gravity and ρ density of the

blood, E1, E2 and η2 material properties of the vessel. Wave-

propagation speed (a), diameter and strain are calculated using

the Stuart model:

ε2 = ε2e · e
−

E2
η2
1t
+

pe D

2δ0E2

(2εe + 1) ·

(
1− e

−
E2
η2
1t

)
(6)

ε = ε2 +
pe D

2δ0E1

· (2εe + 1) (7)

a =

√
E1δ0

ρD0

(ε + 1)
β
2 (8)

D = D0 (ε + 1) (9)

where ε2e and εe are the viscoelastic and total deformation

from the previous timestep, pe is the transmural pressure from

the previous timestep and 1t is the timestep. All of the above

equations are solved within the Transient Simulator.

Fig. 2. Schematic diagram of the Stuart model.

All the applied approximations, assumptions and the detailed

solution of these equations are discussed in Bárdossy and Halász

[5]. The model was validated with several measurements car-

ried out on a single silicone tube (Licskó and Bárdossy [10]).

After tuning the parameters of the Stuart model the agreement

between measured and the simulated pressure curves was appro-

priate.

Using this model one dimensional unsteady flow in a network

consisting of viscoelastic branches can be calculated (Bárdossy

and Halász [5], [6]). The arterial network model was set up

using these viscoelastic branches. The schematic diagram was

constructed using the contribution of Avolio [3] and Wang and

Parker [18]. Some necessary modifications were applied and

the network itself was simplified to 45 arterial branches. Dis-

cussions with physicians pointed out that this resolution is satis-

factory for investigating arteriosclerosis in an arbitrary point of

the arterial network model.The arterial branches are connected

with their ending nodes to each other. In the bifurcations nodal

continuity equations are defined and the static pressure is held

constant. Inflow/outflow velocity of the connected branches can

be calculated this way. The schematic diagram of the one di-

mensional arterial model is shown in Fig. 3

The heart was modeled using an unsteady volume flow rate

source. The volume flow rate as a function of time was taken

from Nichols and O’Rourke [12] and it is presented in Fig. 4.

The arterioles and the capillaries were modeled using resis-

tances with linear behavior.

1p = R × Q (10)

with R resistance and Q volume flow rate. Blood was mod-

eled as a Newtonian fluid with an average density of 1050

kg/m3.

Setting proper initial conditions for each arterial branch and

the interconnecting nodes is highly difficult. Therefore zero ve-

locity, zero deformation and constant pressure was set. After

starting the calculation the quasi-steady state is achieved within

a few heart cycles. One main problem was setting up the pa-

rameters of the Stuart model for every arterial branch. In case

of a single viscoelastic tube the tuning of the parameters E1, E2

and η2 can be carried out using a simple genetic algorithm. This

method is able to fine tune the parameters of the Stuart model

to fit measurement data. In case of the arterial network model

three parameters have to be tuned for each branch. Since the net-

work model consists of 45 branches, 135 parameters have to be

tuned. The genetic algorithm cannot be applied since the com-

putational demands are far too high. Therefore the tuning of the

parameters has been performed on an empirical way. The cal-

culation was performed with presumed parameters. The results

(blood pressure waves) were examined and the parameters were

modified in accordance. Blood pressure waves from Avolio [3]

and Wang and Parker [18] were used for this process.
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Fig. 3. Schematic diagram of the arterial network model.
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Fig. 4. Volume flow rate as a function of time - the boundary condition at

the heart.

3 Results

After fine tuning the parameters of the viscoelastic branches

a final calculation was carried out. The results of this simulation

are treated as the healthy arterial blood flow. Blood pressure

waves in the arterial branches A01 (ascending aorta), A37 (left

external iliac) and A50 (left anterior tibial artery) are shown in

Fig. 5.

Fig. 5. Blood pressure curves at the upstream endings of the arterial

branches A01, A37 and A50

The curves represent one heart cycle. The quasi steady state

was reached after a few (4-5) heart cycles, but the calcula-

tion was continued to eliminate also the minor transient effects.

Therefore the analysis of the resulting curves was carried out 30

seconds after the initial state. Fig. 6 shows the blood pressure

wave and the blood velocity curve in the A38 (right external il-

iac) branch.

Fig. 6. The effect of reducing the diameter on the volume flow rate (A38).

In this case two consecutive heart cycles were examined four

cycles after the initial state. One can notice only slight differ-

ences between the two cycles, the quasi steady state is practi-

cally reached. The effect of arteriosclerosis was investigated as

a next step. According to the advices of physicians the external

iliac was examined in the first calculations. Therefore a steno-

sis was placed into the A38 arterial branch. The initial diameter

of the stenosis was set to the initial diameter of the branch (8.0

mm). The diameter of the stenosis was then reduced stepwise

until the value of 2.2 mm. The resulting changes in the blood

flow were observed through these steps. A total of six calcu-

lations were carried out with consecutively reducing stenosis

diameters. Fig. 7 shows the blood pressure wave and velocity

curve in case of the least stenosis diameter. The volume flow

rate as a function of the stenosis diameter is presented in Fig. 8.

4 Discussion

In the pressure curves of Fig. 5one can notice that the max-

imum of the amplitudes (i.e. the systole) is increasing as we

move further away from the heart. At the same time the mini-

mum (i.e. diastole) is practically unchanged. This phenomenon

is in accordance with the experience of physicians. Also the av-

erage value of the blood pressure is increasing towards the pe-

ripheries. In the blood pressure curve of the aorta (A01) the so
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Fig. 7. Blood pressure and velocity curves in the A38 branch with stenosis

diameter set to 2.18 mm.

Fig. 8. The effect of reducing the diameter on the volume flow rate (A38).

called incisure point (dicrotic notch) is clearly visible just like

on real measurement data. This also points at the agreeable ac-

curacy of the arterial model. Blood pressure and velocity curves

of the right external iliac (A38) are shown on Fig. 6. It should

be noticed that during diastole the velocity is negative for a short

period. Thus blood flow is reversed for a short time in this ar-

terial branch. Fig. 7 presents the blood pressure and velocity

curves for the same arterial branch (A38), however a stenosis

with diameter of 2.2 mm is placed at the middle of the branch.

The presented curves are observed right after the stenosis. The

systolic pressure drops from about 122 mm Hg to 79 mm Hg.

The change in the diastolic pressure is less: it drops from 77

mm Hg to 69 mm Hg. The peak of the velocity curve is also re-

duced: the maximum velocity is reduced from 0.52 m/s to 0.14

m/s. On the other hand the shape of the velocity curve is fun-

damentally different. No backflow occurs, in fact the velocity is

positive during diastole. This is the reason why the volume flow

rate is only reduced from 517 ml/min to 402 ml/min. A diam-

eter reduction of 72,8 % only causes a 22,2 % drop in volume

flow rate. This result was in accordance with the experience of

physicians.

5 Conclusion

In the current paper a one dimensional arterial model network

was created for modeling arterial blood flow. The viscoelastic

effects of the arterial wall were taken into account with the so

called Stuart model. Equations of the material model and the

governing equations describing fluid flow were solved using the

MOC. The so called Transient Simulator software was used to

carry out calculations. The model network consists of 45 vis-

coelastic branches. The heart is modeled as a volume flow rate

source, arterioles and capillaries are treated as linear resistances.

Blood is assumed to be a homogenous, Newtonian liquid. The

parameters of the Stuart model were tuned on an empirical way.

Calculations were carried out on the resulting arterial model net-

work. The results agree well with experiences of physicians.

The effect of a stenosis in the right external iliac was investi-

gated in the next step. The diameter of the stenosis was reduced

stepwise, pressure waves and velocity curves were observed at

the downstream end of the iliac. One could notice a significant

drop in the systolic pressure. However there is a less reduc-

tion in the diastolic pressure. The general shape of the velocity

curve changes remarkably. An interesting result is that reducing

the diameter of the stenosis from 8.0 to 2.2 mm the volume flow

rate of the blood reduces only 22 %. This result is confirmed by

physicians. In the future the calculations should be compared to

blood pressure measurements carried out on humans in order to

validate the arterial model network. A mathematical method has

to be developed for the fine tuning of the viscoelastic parame-

ters. Once this method is functional, the arterial model can be

adjusted to individual patients. The effect of arteriosclerosis can

then be investigated in specific points of the model. The result-

ing pressure waves and blood velocity curves of the calculation

are useful data in terms of the therapy.
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