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Abstract

The goal of this paper is to summarize different investiga-

tions of FE modelling of rubber hysteretic friction which was

produced in the last 4 years in the KRISTAL project (Knowl-

edgebased Radical Innovation Surfacing for Tribology and Ad-

vanced Lubrication, EU Project Reference). First, the charac-

terization of the viscoelastic material properties of an EPDM 75

rubber by 40 term generalized Maxwell model fitted to the loss

factor is presented. After it, the validation of the material model

using it in FE model’s for simulating different tribological tests

are produced. The DMTA test, after micro hardness tests are

modelled. Then, a ball on plate tribological test was simulated

by FEA and to check the reliability of the material model the

test and FE results were compared. Finally, rubber sliding on

a rough surface was modelled and the hysteretic friction was

determined by 2D and 3D FE models.
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1 Introduction

During the design process of different mechanical engineer-

ing applications wherein components are sliding on each other it

is important to know the mechanical behaviour and tribological

properties of the components. In many technical applications

one of the sliding surfaces is made of rubber or a rubber-like

material (such as seals contacting with a metal or polymer sur-

face, wiper blades-wind screen and tires-road contact etc.). In

case of clean surfaces and in the absence of lubricant when con-

tacting surfaces are dry the main source of rubber friction is the

adhesion and hysteresis [1–3]. The joint effect of them gener-

ates frictional resistance when an elastomer part is pressed and

rubbed against a rough surface.If the rubber slides on a rough

surface which is rigid compared to the rubber, the asperities of

the surface repeatedly deform the surface of the rubber. Due to

the viscoelastic material behaviour of rubber, during deforma-

tion, part of the strain energy is transformed to heat as a result of

the hysteresis [3]. Generally, rubber components operate under

lubricated conditions, to separate rubbing surfaces thus reduc-

ing the impact of adhesion, as well as by filling up the valleys

with the lubricant to reduce the exciting effect of asperities. The

shearing of the fluid film also acts as a source of friction. In

general, the fluid film is extremely thin, therefore many times

boundary lubrication occurs.

Numbers of articles deal with the analytic and semi-analytic

determination of friction force induced by from hysteresis.

Grosch [3] performs pioneering work by revealing that the two

main sources of the friction force are adhesion between the sur-

faces and the energy loss generated in the material, that is, hys-

teresis. In addition, he stated that both physical phenomena are

closely connected to internal friction (hysteresis) of the rubber.

In the papers of Persson and Klüppel [4,5] they investigated the

rubber when it is sliding on a hard, rough substrate and energy

dissipated inside the rubber due to the surface asperities of the

substrate exert oscillating forces on the rubber surface. Hys-

teretic friction was determined and the results were compared

with the experimental data of Grosch. Persson stated that rubber

friction on rough surfaces in presence of lubricant is mainly due

to the viscoelastic deformations of rubber (hysteresis).
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In the literature only a few paper deal with the hysteretic fric-

tion prediction by the finite element method. For instance, in

[6, 7] the hysteretic friction at asperity level was studied by FE

technique.Nevertheless, the reliability of hysteretic friction pre-

diction caused by rough surfaces is in close connection with

the effectiveness of topographical analyses. Beside the param-

eter based techniques, nowadays two dominant research trends

can be observed. One is the “global” surface characterization

method using complex mathematical tools, such as power spec-

tral density (PSD) analysis, while the other is the technique to

characterize the local features of topographies based on the iden-

tification of asperities and scratches. Due to the development

of characterization techniques remarkable improvement has oc-

curred in the field of measurement techniques: for example, the

atomic force microscopy (AFM) extents the surface characteri-

zation to nano-scale [8].

2 Experimental

The mechanical behaviour of rubber-like materials is princi-

pally characterized by a non-linear stress-strain curve and time

and temperature dependency.

2.1 DMTA measurement and results

In order to characterize the viscoelastic nature of the observed

peroxide cured EPDM rubber with a ≈ 65 phr carbon black

content (CB N347), IRH 75 (referred further on as EPDM 75)

DMTA measurements were performed. The DMTA measure-

ments were carried out with equipment GABO Eplexor 100N

(Ahlden,Germany) at TU Kaiserslautern in the IVW (Institut für

Verbundwerkstoffe GmbH). During the test the complex modu-

lus (E*) of the material, its storage (E’) and loss (E") parts, as

well as its mechanical loss factor (tan(δ)) were recorded. Later,

the master curve of the observed material can be constructed

from the DMTA test results to characterize the viscoelastic prop-

erties of the rubber. Details of the test are written in the [9].

2.2 Micro hardness test and results

Micro hardness tests were performed on the EPDM 75 mate-

rial using a dynamic ultra micro hardness testing set (Shimadzu-

type DUH 202) on the 1 mm thick rubber samples. Due to

the measurement three different load modes were used Fig. 1

[10]. The micro hardness test procedure begins with the sur-

face detection. During this procedure the diamond pyramid ap-

proaches and touches the investigated surface until the contact

force reaches the 2 mN value. The loading and unloading speeds

were the same 1.4 mN/sec in each loading. In mode-1 and mode-

3 after reaching the maximum loads, 2 sec holding time was ap-

plied, the unloading starts after the holding time. In mode-3 the

unloading was also followed by 2 sec holding time. The details

of the micro hardness test can be seen in [10].

The results of the micro hardness test (and the later described

FE results) can be seen in Fig. 6. For the first case (mode-1) a

2 sec long holding time was located between the uploading and

downloading phase Fig. 6a while the material undergoes a creep

process. After the load is completely removed it can be seen that

the investigated material undergoes retarded deformations due

its viscoelastic nature and the surface of the material doesn’t

recover to its original position. In the case of mode-2 micro

hardness tests hysteresis and hardening can be observed Fig. 6b.

In mode-3 Fig. 6c. Mullins-effect like process can observed,

superimposed with creep during the 2 sec holding times.

2.3 Ball on plate test and results

The ball on plate tests were performed on a CSM INSTRU-

MENTS microtribometer [11] at TEKNIKER. In the ball on

plate configuration test a steel ball of 2 mm diameter was pressed

against to the EPDM rubber plate of 10 mm×4 mm×2 mm.

Then the ball was forced to perform reciprocating motion with

an amplitude of A=0.3 mm at different, sinusoidally varying

speeds. The normal force was Fn= 100 mN while the maxi-

mums of the sinusoidally varying sliding speeds were vmax= 0.1,

1, and 10 mm/s. During tests, the frictional and normal forces

were measured under lubricated conditions.

3 40-term generalized Maxwell model

Three different 40-term generalized Maxwell models fitted

to the loss factor (see later), considering three temperatures

(T = −50, 20 and 150◦C), were constructed based on the

DMTA measurement results.

3.1 Construction of the master curve using the WLF-

Arrhenius equation

The temperature vs. time equivalence developed for poly-

mers can be described by the Williams-Landel-Ferry (WLF)

equation [12–15]. The WLF equation can be used for deter-

mining the shift factors compared to the curve associated with

the respective reference temperature, thus a master curve for the

corresponding material can be constructed.As we are going to

study the material behaviour at three different reference tem-

peratures, master curves associated (T = −50, 20 and 150◦C)

were constructed, by horizontal shifting the measured curves, in

case of DMTA tests. In Fig. 2 the curves represent the master

curves pertaining to the three reference temperatures, respec-

tively, and indicate the storage (continuous line) and the loss

modulus (dashed line) as a function of excitation frequency.

Fig. 2 show the course of the ready master curves. It can be

seen that the value of the loss modulus (E”) does not increase

continuously as the frequency rises, but after reaching a maxi-

mum value it begins to decrease and approaches a plateau value

[16]. The loss factor (tan(δ)) master curve is derived as the ratio

of the loss (E") and storage (E’) modules Fig. 3. Due to this it

has also a global maximum value near, to the maximum of the

loss modulus.
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Fig. 1. The loading curves of the micro hardness measurements a. mode-1, b. mode-2, c. mode-3

Fig. 2. Master curve of the storage (E’,continuous lines) and loss moduli

(E”, dotted lines);reference temperature Tre f = −50, 20 and 150◦C

Fig. 3. The measured (continuous lines) and fitted (dashed lines) loss factor

curves and FE simulated loss factor values (different symbols) of the 40-term

generalized Maxwell model fitted to the loss factor master curve

3.2 Fitting of the generalized Maxwell-model to the master

curve

Based on the constructed master curves three different 40-

term generalized Maxwell models were created for the three dif-

ferent reference temperature fitted them for the loss factor (by

using the ViscoData software [17]).The details of the general-

ized Maxwell model fitting can be seen in [9, 10, 18–20].The

non-linear stress-strain behaviour of the rubber was modelled

with the frequently used Mooney-Rivlin model applying two

parameters [21] with values of c10= 406.66 MPa and C01 =

106, 66 MPa (E0 = 3050 MPa) The construction of the gen-

eralized Maxwell model in detail can be found in [10, 18–20].

c01 = 106.66 MPa (E0 = 3050 MPa) (1)

4 FE simulation of the micro hardness test

In the following chapter the presented FE models were cre-

ated by MSC.MARC 2007(r1) FEA software.

4.1 The FE model of the DMTA test

The material model described was used in a simulated DMTA

test by FEA to model the dynamic behaviour and dissipated en-

ergy in the rubber. Geometry of the FE model was created ac-

cording to the sample size in the DMTA measurement consider-

ing 1/8 model due to the symmetry conditions. To describe the

rubber sample 8-node incompressible Herrmann elements were

used [21]. The applied loads were εs = 0.06581% in static case

and ε= 0.01% in dynamic case, while the observed frequency

range was

f = 10−5
− 1015 Hz. (2)
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Fig. 4. The scheme of the hardness test showing the Vickers diamond pyra-

mide

The result of the simulation was the shift (1t ) between the stress

and the strain responses. The phase shift (δ) loss can be calcu-

lated from the shift by [16]:

1t2π f (3)

The FE results for the loss factor follow the generalized

Maxwell models at every frequency Fig. 3. The continuous

lines pertaining to the measurement, while the dashed lines

correspond to the fitted generalized Maxwell model. Black

points, rectangles and triangles shows the simulated FE results

at T = −50, 20 and 150◦C , respectively.

In the 40-term generalized Maxwell model fitted to the loss

factor by trial and error technique, the loss factor shows an ac-

ceptable correspondence with the measured loss factor curve,

but we have to note that due to the smaller underestimation of the

storage modulus the estimation of the dissipated energy will be

slightly higher than the real value. The FE model of the DMTA

test and their results can be found in detail in [9].

4.2 FE model of the micro hardness test

In order to verify the generalized Maxwell model, FE models

were prepared to simulate the micro hardness test. The scheme

of the micro hardness test can be seen in Fig. 4. In the FE sim-

ulations the surface touching process is also considered and in-

volved as in the measurement. The FE mesh of the micro hard-

ness tests considering axisymmetric model is shown in Fig. 5.

To model the rubber sample 4-node incompressible Hermann

type elements [21], while to model the diamond indenter a rigid

surface were used. Due to the axisymemetric FE model the in-

clination angle of the cone had to be changed to 19◦ to represent

the same contact surface as in case of the diamond pyramid in

the measurement.

The results of the FE calculation can be seen in Fig. 6. It

can be concluded that both fitted Maxwell models can describe

the material behaviour of rubber in case of a micro hardness

test. The FE model predicts larger penetration depth compared

to the measurement. But the creep of the material during the 2

sec holding time was simulated successfully. The reason can

be found in the penetration frequency. The penetration fre-

quency can be evaluated from the penetration speed and the

Fig. 5. The FE mesh of the micro hardness test using an axisymmetric con-

tact model

penetration depth that arise around 0.1 Hz. The storage mod-

ulus at the observed frequency is E = 14 MPa in case of model

which is lower then the measured value. Although the fitted

Maxwell model can describe adequately the upload phase in

case of mode-1, and can follow the relaxation phase of the load

curve (when the force kept at a constant level) but in case of

download phase the material model shows a higher ‘stiffness’

considering the calculated load at the diamond indenter. This

effect shows an error in the penetration of the indenter at the end

of each load cycles, that is cumulated. That is why one can see

handsome difference between the measured and calculated pen-

etration in repetitive cycle type of loads Unfortunately this ma-

terial model underestimates the storage modulus because of the

manual modification [20] and this is the reason why this model

can predict too large penetration. The micro hardness test and

the FE model results can be found detailed in [10].

4.3 FE model of the ball on plate test

In the FE model of the ball on plate configuration to model the

rubber plate incompressible Herrmann type elements (υ=0.5),

while to model the steel ball an ideally rigid component was

used. Only half of the rubber plate was modelled using sym-

metry condition, so the nodes in the symmetry plane were fixed

in z-direction Fig. 7. The bottom of the rubber plate was fixed,

i.e. the nodes on this plane were constrained in x-, y- and z-

direction. At first, the steel ball was pressed (in negative y-

direction) into the rubber plate with the force specified, that was

built up linearly. Afterwards, the ball was drawn horizontally

(in negative x-direction) at sinusoidally varying speed according

to the measurement, at an amplitude of A = 0.3 mm, through

six cycles. The results of the simulation were the friction force

arisen from the hysteretic friction and the calculated coefficient

of friction.

Two models were produced. One of the models was made to

verify the FE model, so that a coefficient of friction – preset by

an iterative method – was taken into consideration to character-
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Fig. 6. The load-displacement curves of the measurements (continuous lines) and FE simulations (dotted lines) considering

Fig. 7. FE model (only half of the rubber plate was modelled due to the

symmetry)

Fig. 8. The coefficient of friction in function of the distance covered by the

ball,at F=100 mN load and v=0.1 mm/s maximum speed

ize fluid film shearing and boundary lubrication. This prescribed

coefficient of friction had to be set in a way that its value – su-

perimposing with the coefficient of friction caused by hysteresis,

as calculated by the FE software – should be equal to the mea-

sured value of the coefficient of friction pertaining to sliding. By

setting coefficient of friction of µ= 0 in the other model, calcu-

lations were performed to determine the hysteresis component

of the coefficient of friction. Based on preliminary calculations

the change of the coefficients of friction calculated can be con-

sidered as “steady state” by cycle 6.In Fig. 8, the black lines

represent the coefficient of friction, taking into consideration the

fluid film shearing, boundary lubrication and the hysteresis re-

quired during iterative calculations. The separate rhombics and

square symbols show the values of the measured coefficient of

friction for two subsequent measurements; the circles connected

by a continuous grey line represent the results of the calculation

at µ= 0. By this iterative approach we could identify the portion

of the coefficient of friction due to hysteresis as well as fluid film

shearing and boundary lubrication. Fig. 8 show that, comparing

to the measured coefficient of friction the FE iterative calcula-

tion can approximate the friction behaviour of the sliding pair.

To see the impact of the sliding speed on the predicted hys-

teresis the sliding speed range was extended 0.01-100 mm/s,

thus the excited frequency range was between 10−2 Hz and 10+2

Hz in the FE simulation. Fig. 9 show the hysteretic friction and

the penetration depth of the ball in this extended sliding speed

range. The highest hysteresis can be observed at 150◦C at each

speed, due to a low elastic modulus and a significant loss factor.

The highest hysteresis was calculated at 1 mm/s. At this sliding

speed (exciting frequency about 1 Hz) the peak of the hysteresis

is corresponds to the small peak of the little bit oscillating loss

factor (see Fig. 3. At 20◦C the same peak of the loss factor can

cause very similar effect but to a smaller extent.

In order to understand the results at −50◦C, relative to the

ones at room temperature two different tendencies should be

followed. The loss factor is greater by nearly one order of mag-

nitude and E’ is greater by more that one order of magnitude.
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The loss factor increases nearly proportionally the friction force,

while the larger E’ highly reduces the volume of material sub-

jected to deformation. This volume is proportional to the pene-

tration depth. In the FE studies, at first, the ball was pressed into

the rubber sample. At −50◦C the depth volumes is lower nearly

by one order of magnitude compare to the penetration depth at

room temperature, yielding to much smaller volume deformed,

affected by the loss factor, which is greater. The joint effects

of these two different tendencies characterize the hysteretic fric-

tion. It can be stated that the material model models the loss fac-

tor accurately but underestimates the measured storage modulus.

In the case of increasing frequencies, the degree of underesti-

mation gradually decreases. As a result of the underestimated

elastic modulus, the results in Fig. 9 for room temperature and

150◦C can be considered as upper estimates as regards the COF.

More in detail about this investigation can be found in [17, 18].

4.4 Hysteretic friction prediction in case of rubber sliding

on a hard rough surface

In order to examine the hysteretic friction when smooth rub-

ber block slides on a hard, rough surface, 2D and 3D FE models

were constructed. Firstly, to characterize the surface roughness

of a plunger of a brake cylinder surface roughness measurements

were done using a Mahr Perthometer Concept type stylus instru-

ment and an Atomic Force Microscope (AFM).

The PSD (Power Spectral Density) analysis, that decomposes

the surface roughness into harmonic components, makes a con-

nection between the real, measured surface roughness and the

surface roughness model applied. With the help of the PSD anal-

ysis of a measured rough surface, one can determine the char-

acteristic wavelengths and amplitudes of its harmonic compo-

nents. Using the harmonic components of a measured rough sur-

face one by one or their combination one can examine the contri-

bution of each component of the surface roughness (from micro-

to nano-level) to the hysteretic friction. The surface roughness

measurement and analysis is described in [8]. The results of the

surface characterization show that the dominant wavelengths (λ)

are in the range of 400 nm −250 µm.

In the case of the 2D FE model an assumption was made. The

microscopic surface roughness of the rough surface was mod-

elled by two different sine waves having a wavelength of 100

µm and 11.11 µm (called them surface A and B) where the peak

to peak distance (double of the amplitude of the sine waves)

were 8 and 2 µm, respectively. Furthermore, by the combina-

tion of surface A and B (surface A+B) where the surface B was

superimposed on surface A. The exciting frequency consider-

ing 10 mm/s sliding speed 100 Hz in case of surface A and 900

Hz in case of B surface. Due to the periodicity in the surface

roughness it is sufficient to model a small, repetitive segment of

the rubber. For this purpose repetitive symmetry was used. The

rubber has been modelled by plane strain QUAD80 elements,

while the rough surface has been modelled as an analytical rigid

surface [21].

The sliding contact between the rubber and the rough surface

was modelled as follows. Firstly, the rubber segment was com-

pressed with a pressure of p= 1 MPa against the surface by using

incremental techniques. During the indentation the relative tan-

gential velocity between contacting bodies was zero. The sec-

ond step was the acceleration of the rubber block up to a sliding

speed of 10 mm/s. During this the rough surface was fixed in

vertical direction and the nodes on the lateral walls of the rubber

were forced to move identically (see Fig. 9). The third one was

the horizontal motion with a constant speed of 10 mm/s, where

boundary conditions were the same as in the previous load case.

The pressure on the top wall was also applied during the second

and third step.

It can be established on the basis of the coefficient of friction

in Table. 1 that in the case of surface A the highest friction co-

efficient was obtained at room temperature while the lowest one

at −50◦C. In the case of surface B, a similar tendency can be

observed; however, the highest coefficient of friction can be ob-

served at 150◦C. In case of surface A+B, it can be established

for all three temperatures that hysteresis will be greater than at

surfaces A or B separately. Also in case of surface A+B, the

greatest hysteresis loss can be calculated at room temperature.

The 2D model and their results can be found in detail in [20].

Tab. 1. Average, steady-state coefficient of friction at different temperatures.

µhysteresis

T[◦C] A B A+B

-50 0.028 0.026 0.030

20 0.054 0.071 0.119

150 0.046 0.085 0.111

5 Conclusions

The time- and temperature- dependent material behaviour

of the investigated EPDM 75 rubber was measured by DMTA

equipment. Using the temperature-time equivalence princi-

ple, master curves were constructed from the measurement re-

sults considering three different temperatures (−50◦C, room

temperature and 150◦C). After that, three different generalized

Maxwell models were constructed. Using the Maxwell models,

a series of FE models has been created to investigate the vis-

coelastic behaviour of the rubber in a broad frequency range.

Based on the results of the FE simulation of the DMTA test,

it can be concluded that however the 40-term Maxwell model

fitted to the loss factor master curve shows a smaller underesti-

mation considering the storage modulus but describe the energy

loss accurately in case of EPDM 75 rubber.For the verification

of the material models an axisymmetric FE model was built to

simulate micro hardness test for the investigated EPDM rubber.

The 40-term generalized Maxwell model fitted to the loss factor

predicts larger penetration depth compared to the measurement.

But the creep of the material during the 2 sec holding time was

simulated successfully.3D FE model has been developed for the
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Fig. 9. The coefficient of friction in function of the distance covered by the ball,at F=100 mN load and v=0.1 mm/s maximum speed

prediction of hysteretic friction force in case of a reciprocating

steel ball sliding on a rubber plate. The 40-term Maxwell model

described the material behaviour at −50◦C, room temperature

and 150◦C. At −50◦C two tendencies characterise the material

behaviour. The loss factor (tan(δ)) is greater by nearly one order

of magnitude, and at the same time the storage modulus (E’) is

higher, representing stiffer behaviour.

It can be concluded that the hysteretic friction is specified by

the joint effect of the magnitude of the energy dissipation and

the excited volume of the rubber on what the energy dissipation

has an effect. In this manner, not only the loss factor has an im-

pact on the hysteretic friction of the rubber, but also the storage

modulus. In order to predict the hysteretic friction more accu-

rately or to provide below and/or upper limit for the hysteretic

coefficient of friction one has to construct a material model that

describes both the storage modulus and the loss factor master

curves measured with sufficient accuracy.2D FE model has been

developed which is able to predict the contribution of any har-

monic component of the measured surface roughness to the hys-

teretic friction force. Comparing the different wavelength values

the hysteretic friction is higher if the smaller one is considered

and we have the highest friction coefficient values if the smaller

wavelength was superposed to the larger one. These tendencies

are remarkable at room and higher temperatures.

References

1 Zhang S W, Tribology of Elastomers, Tribology and Interface Engineering

Series, 47, (2004).

2 Persson B N J, Albohr O, Creton C, Peveri V, Contact area between a

viscoelastic solid and a hard, randomly rough, substrate, J Chem Phys, 120,

(2004), 8779-8793, DOI 10.1063/1.1697376.

3 Grosch K, The relation between the friction and viscoelastic properties of

rubber, Proc. R. Soc. London, Ser. A, 274, (1963), 21-39.

4 Persson B N J, Theory of rubber friction and contact mechanics, J Chem

Phys, 115, (2001), 3840-3861, DOI 10.1063/1.1388626.

5 Klüppel M, Heinrich G, Rubber friction on self-affine road tracks, Rubber

Chem Technol, 73, (2000), 578-606.

6 Soós E, Goda T, Numerical analysis of sliding friction behaviour of rubber,

Material Science Forum,, posted on 2007, 537-538,615-621, DOI 10.4028/3-

908453-53-4.615, (to appear in print).

7 Nettingsmeier J, Wriggers P, Frictional contact of elastomer materials on

rough rigid surface, PAMM-Proc. Applied Mathematics and Mechanics, 4,

(2004), 360-361.

8 Pálfi L, Békési N, Czifra A, Goda T, Váradi K, Fe simula-

tion of the hysteresis friction considering the surface topography, Pe-

riodica Polytechnica,Mechanical Engineering, 52/2, (2008), 83-91, DOI

10.3311/pp.me.2008-2.08.

9 Pálfi L, Felhös D, Váradi K, Characterization and implementation of the

viscoelastic properties of an EPDM rubber into FEA for energy loss predic-

tion, Periodica Polytechnica, Mechanical Engineering, article in press.

10 Pálfi L, Váradi K, Characterization of the generalized Maxwell model for

hysteretic friction prediction, Journal of Computational and Applied Me-

chanics, article in press.

11 CSM-Instruments SA Advanced Mechanical Surface Testing, Nanotri-

bometre ultra low friction mechanisms, 17.08.2006, available at www.

csm-instruments.com.

12 Ferry J D, Viscoelastic Properties of Polymers, John Wiley and Sons, 1980.

13 Aklonis J J, MacKnight W J, Introduction to Polymer placeCityViscoelas-

ticity, Wiley-Interscience Publication, 1983.

14 Ward I M, Mechanical Properties of Solid Polymers, John Wiley and

Sons,Chichester, 1971.

15 Matsuoka S, Relaxation Phenomena in Polymers, Hanser Publish-

ers,Munich, 1992.

16 Bodor G, Vas L M, Polimerek anyagszerkezettana, Müegyetemi Ki-

adó,Budapest, 2001.

17 Herdy M, Introductory Theory Manual ViscoData and ViscoShift, IBHInge-

nierbüro, 2003, available at www.viscodata.de.

18 Pálfi L, Goda T, Váradi K, Theoretical prediction of hysteretic rubber fric-

tion in ball on plate configuration, eXPRESS Polym Lett, 3, (2009), 713–

723, DOI 10.3144/expresspolymlett.2009.89.
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