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Abstract

Tribological modeling of elastomeric parts has high impor-

tance in engineering practice due to their widespread industrial

use. Generally, the experimental investigation of the wear be-

havior is time consuming and expensive, which led to the de-

velopment of numerical techniques. The common finite element

method (FEM) based wear simulation techniques are usually

limited to the top layer of the elements in the FE mesh. This

can be insufficient in case of elastomers because of their high

deformation.In order to model wear that is larger than the el-

ements of the FE mesh, a wear simulation procedure was de-

veloped using global remeshing. By this new wear simulation

technique, a reciprocating sliding seal was analyzed. Contact

pressure distribution as well as the resultant sealing force was

evaluated during the wear process. It was concluded that the

wear reduced the contact pressure peaks along the ridges of the

reciprocating seal. Around the lip similar tendencies were ob-

tained during the simulated wear process. The results showed

that the method is suitable for modeling wear even if it is three

times larger than the element size in the vicinity of the contact

area.
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1 Introduction

Even though tribology is traditionally an experimental sci-

ence, in the last decades the numerical simulation of tribolog-

ical processes, like wear became popular. There were several

studies using different numerical methods for calculating wear.

Serre et al. in [1] used the boundary element method (BEM)

to determine the contact pressure distribution for further wear

calculations. Fillot et al. in [2] applied the method of discrete

elements, which made it possible to model the effects of wear

debris as third body of the tribological system. Páczelt and

Mróz in [3] showed a variational approach for wear analysis.

However, the most popular numerical technique in engineering

is the finite element method (FEM). The breakthrough in nu-

merical wear simulation was the technique presented by Pödra

and Andersson [4]. In this iterative method, firstly the contact

pressure distribution is determined by FEM and the nodal wear

increments are calculated from the wear equation of Archard

[5]. Then the contacting nodes are moved with respect to the

nodal wear values. Finally the FE contact calculation is carried

out again with the modified mesh and the cycle is repeated ac-

cording to the simulated wear process. Eleőd in [6] also used

the finite element method, but instead of moving the nodes, the

damaged elements became deactivated based on a fatigue dam-

age criterion. Kónya and Váradi in [7] improved the method of

Pödra and Andersson in order to consider heat generation and

time dependent material properties during the wear simulation.

Despite the widespread use of the Pödra-Andersson method, the

wear simulation is highly limited; only the top layer of elements

can be worn. This limitation does not affect the usability of the

method in case of relatively hard materials such as metals or

ceramics, since minimal wear can have a great effect on the con-

tact area and pressure distribution and thus on the performance

of these parts (e.g. bearings). In case of rubber parts, wear in the

magnitude of some µm does not change the contact conditions

significantly. Furthermore the wear needed for a rubber part to

malfunction is much greater than those of metal parts; therefore

the wear of the top layer is insufficient in rubber applications.

To increase the volume of the wear to be modeled, the size of

the elements can be increased; however it is not recommended,
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since it decreases the accuracy of the calculation. In the present

paper authors propose a method to simulate wear regardless of

the element size.It will be shown that this method (with global

remeshing) can model the material loss due to wear even in a

scale comparable with the size of the part.

2 The investigated application

In order to demonstrate the method proposed in this paper a

wear simulation study of a reciprocating sliding seal (Fig. 1) is

presented. In the investigated application a rubber seal is cou-

pled with an aluminum rod (diameter:∅ 22.2 mm). The system

is lubricated by hydraulic fluid type Hydrulan 407-1 of BASF

(Ludwigshafen,Germany).

Fig. 1. Section view of the investigated reciprocating seal

Fig. 2 shows a photograph of the worn surface of a similar

reciprocating seal (the photograph was provided by the manu-

facturer of the seal, TRW Automotive, Navarra,Spain). It can be

seen that the wear is non-uniform. The enlarged area reveals a

wear phase, in which the ridges of the seal are almost completely

worn, while in other regions the ridges are clearly visible.

In this case study, the seal was modeled as an axisymmet-

ric component using MSC.MARC finite element software pack-

age.The counter-surface was modeled as rigid body, since its

elastic modulus is some orders of magnitude larger than the

elastomer material of the seal. The seal was mounted axially

by fitting it in the housing, which was considered ideally rigid.

The rod was moving with alternating motion at a speed of 20

mm/s with 9 mm amplitude. The contour of the seal section

was modeled by line segments (Fig. 3). A fine approximation

in the vicinity of the lip as well as the ridges was required; in

the region of the ridges and the lip the average length of the line

segments was 10 µm.

The seal section was meshed by the built-in automatic mesh-

ing procedure using three-node axisymmetric triangular finite

elements (Fig. 4). In the FE calculations the interference fit be-

tween the seal and the rod was also taken into consideration: the

unloaded inner diameter of the seal was 1.8 mm smaller than

the diameter of the rod.This caused the seal to be stretched in

load step 1. In the next step the alternating motion was mod-

Fig. 2. Photograph of worn surface of a reciprocating sliding seal

Fig. 3. The geometry of the seal consisting of line segments and points

eled considering the friction during the wear simulation. Ac-

cording to the working conditions, in the inward strokes of the

rod a pressure load of p=12 MPa was applied on the right side

of the seal, modeling the sealed pressure. There was no pres-

sure applied in the outward strokes. Between the seal and the

rod a prescribed coefficient of friction with a value of µ = 0.1

was defined in order to model the lubricated friction [8]. The

material properties of the seal was modeled by a 15-term gen-

eralized Maxwell model with a hyperelastic Mooney-Rivlin ele-

ment (C10 = 289.33 MPa and C01 = 72.33 MPa). The material

model used is described in details in [9].

Per. Pol. Mech. Eng.72 Nándor Békési / Károly Váradi



Fig. 4. Deformed shape of the seal in the first outstroke (without pressure).

The curves represent the rigid bodies (the rod and the housing). The element

size varies from 10 µm to 200 µm

3 The wear simulation procedure

In the wear simulation process, the FE mesh was created

based on the line segments describing the geometry.The auto-

matic mesher was set to create elements of different sizes, so

the elements in the vicinity of the contact zone were smaller

than those deep inside the material. In the initial mesh approxi-

mately 4000 elements were distributed in a way that the regions,

that are important for the wear calculations, were modeled more

accurately with the small elements. Even so the total number of

the elements remained in a reasonably low range, so the CPU

time for one calculation was short enough to handle the iterative

simulation process.

The flowchart of the simulation can be seen in Fig. 5. In the

first step the FE mesh was created based on the initial geom-

etry. After adjusting the simulation parameters (coefficient of

friction, sliding velocity, material properties, applied pressure,

time increment, etc.) the contact calculation was run. In the first

stroke the rod was moving rightward. After the FE contact cal-

culation, the wear increment was determined based on the stress

distribution. The 1hi nodal wear of the i-th node in the contact

area by Archard [5] is defined as:

1hi = Ws piv1t (1)

where Ws is the specific wear rate, pi is the nodal contact pres-

sure at node i, v is the sliding velocity, 1t is the time increment.

The specific wear rate was set to 5.5 E–6 mm3/Nm, which is

about two orders of magnitude higher than it is common for this

type of applications. However, it was necessary to accelerate the

wear process in order to get significant wear in reasonable CPU

time. The surface nodes were attached to the contour points, so

if a point was moved the attached node would also move with re-

Fig. 5. The flowchart of the wear simulation process.

spect to the nodal wear value of the attached node. After moving

the points, the whole FE mesh was deleted. Based on the new

geometry the automatic mesher created the new elements and

the cycle ran. over again. The direction of the rod motion was

changed in each cycle, so one simulation cycle represented one

outward (left) or one inward (right) stroke. The applied pressure

was also changed stroke by stroke, as for the inward strokes the

working pressure of 2 MPa was applied, while in the outward

strokes the working pressure was turned off in the simulation

process.200 simulation cycles were calculated in the frame of

this study.

4 Results and discussion

Fig. 6 shows the deformed shape of the seal in the first out-

ward stroke, when the seal was not pressurized. The resulting

contact pressure comes from the stretching of the seal on the

rod. It can be seen that the contact area is reduced: only five

ridges on the left side, one on the right side and the lip are in

contact with the rod. The maximum of the contact pressure can

be observed at the lip.The values of the contact pressure are gen-
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Fig. 6. Deformed shape of the seal in the first out-

ward stroke (without applied pressure) and its contact

pressure distribution.

Fig. 7. Evolution of the calculated worn profile

after 0, 50, 100, 150 and 200 cycles of the simula-

tion in inward strokes (p = 2M Pa pressure applied)

and the corresponding contact pressure distributions

along the axis, respectively.

erally low, since there is no working pressure applied to press the

seal surface to the rod.

The calculated worn profiles of the seal are shown in Fig. 7

after 0, 50, 100, 150 and 200 cycles of the simulation.It can be

seen that the left side ridges of the seal and the lip edge wear

first. Fig. 7 also shows the contact pressure distributions in

the investigated wear phases. Note that the FE mesh is differ-

ent in each state, since the model was remeshed in every cycle;

however the element sizes are distributed identically. It should

mentioned that the total simulated wear depth reaches 30 µm in

some regions (e.g. at the lip), which is three times higher than

the size of the elements in the contact area.This wear depth is

so large that the Pödra-Andersson method can not be applied

here.Based on the change of contact pressure distribution the

followings can be established. The area of contact increased,

while the maximum values of the contact pressure decreased.

This phenomenon can also be seen in Fig. 8 for the contact pres-

sure distribution of the lip over the wear process.One can see

that the seal at the beginning has about three times higher con-

tact pressure than later. The pressure reduction is caused by the

wear process, which also increases the contact area. It is remark-

able that at the left side of the lip the contact pressure is increas-

ing at first, and then slightly decreasing. It can be explained by

the wear of the lip. As the lip has the highest contact pressure

in the beginning of the simulation, it will suffer the most severe

wear in the first cycles. As the lip wears, the contact pressure

distribution becomes flatter, which causes the slight increase in

the lower pressure region. Later this mostly uniform contact
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pressure remains, only the average pressure decreases.

Fig. 8. The change of the contact area and the contact pressure distribution

at the lip over the wear process

The resultant sealing force was calculated by integrating the

contact pressure distributions (Fig. 9). One can see that the val-

ues tend to decrease slightly. It can be explained by the reducing

interference of the parts due to the wear.

Fig. 9. The resultant sealing force over the wear process

5 Conclusions

In order to model wear that is larger than the elements in the

FE mesh, a wear simulation procedure with global remeshing

was developed. The simulation technique was based on the

Pödra-Andersson approach [4], but instead of simply moving

the contacting nodes according to the determined nodal wear

values, the calculated new geometry was remeshed in every sim-

ulation cycle. This concept required an accurate modeling of the

seal contour especially in the vicinity of the contact area. This

way not only the top layer of the elements can be worn, but even

the wear bigger than the elements can be simulated. The pro-

posed wear simulation method was demonstrated in the analysis

of a reciprocating sliding seal. The results show that during the

wear process the contact pressure distribution basically changed.

The peak values decreased as the wear progressed and the area

of contact increased. At the same time the resultant sealing force

slightly decreased. Finally it needs to be mentioned that the pre-

sented method can be easily applied in other applications (in 2D

and 3D) not only in the ones similar to the sliding seal demon-

strated in this paper.
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