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Abstract
In the article, an optical method is described to measure the

surface roughness on ultrafine machined metal surfaces. The
method is capable for measurement of surface roughness with-
out mechanical contact, and without removing the work piece
from the machine.

The traditional stylus-type devices require direct physical
contact, which leaves scratches on the parts, whereas this op-
tical method leaves the parts untouched. It is important to men-
tion in advance that the characteristic magnitude of the rough-
ness has to be below the wavelength of the applied electromag-
netic wave, since this assumption is taken strictly in considera-
tion of our method. If we apply any diode laser which operates
in the typical wavelength range of 0.6-1 µm, in such a case the
adequate average roughness is below 0.1 µm, we may speak in
this sense about ultrafine machining.
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1 Introduction
The optical measurement of topography of machined metal

surfaces has been approached different directions in the past [1]-
[3]. Bennett and Pourteus were who extended the profilometry
to the noncontact direction [4]. They gave in their paper a com-
plete expression at normal incidence to the reflectance. In this
work they used Davies’ [5] results which were developed in con-
nection with the scattering of radar waves on sea surface. In this
theory the water surface was characterized by Gaussian height
distribution. A fundamental difference between the machined
metal surface and the water surface is evident. Namely the sea
surface is a dynamic, whereas the metal surface is a static sys-
tem. Stover started on another way, he developed a new con-
ception in this field. Stover set out from that fact, that any ar-
bitrary surface profile can be thought of as being composed of
a large number of sinusoidal surfaces of various amplitudes and
spatial frequencies, directing in various directions in a plane.
The actual surface was considered as the superposition of the
above sinusoidal surfaces [6]. Our work points out that using
Kirchhoff scalar diffraction theorem in far-field approximation
the total diffracted and the specular reflected powers determine
the average roughness (Ra), if the wavelength is far much as the
magnitude of roughness.

2 Theory
This theory aims to measure plain surfaces. The machined

surface is illuminated by a monochromatic light beam and the
propagation properties of the developed amplitude on the inves-
tigated surface are determined by the surface roughness. With
respect to the ultrafine investigations, we take the following as-
sumptions:

1 The deviation of the surface from an imaginary plane is de-
scribed by a scalar-vector function S = z − ξ (x, y) which at
S = 0 means the z = ξ (x, y) surface. ξ (x, y) is the devia-
tion in every( x,y) point from the plane that is characterized
by z = 0. The absolute value of ξ (x, y) is much smaller than
the applied wavelength |ξ (x, y)| 〈〈λ.

2 The illuminating beam is plane wave.
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3 The machined metal surface is perfect in reflection (R = 1).

4 The reflected amplitude on the surface is determined by the
local surface geometry and by the incident beam.

5 The beam propagation is determined by the Kirchhoff scalar
theory and the observation happens in the far-field.

Let us imagine a fine machined metal surface in the z = 0 plain,
as it was said this surface is given by the function z = ξ (x, y).
In every point of this surface, there is the electric field ampli-
tude ϕ (x, y, ξ (x, y)) that is developed by the illumination and
reflection on the metal surface. The z = ξ (x, y) surface divides
the whole space two half spaces. In a rp =

(
x p, yp, z p

)
point

of the right half space we can give the field amplitude by the
Kirchhoff integral formula:

ϕ
(
x p, yp, z p

)
=

1
4π

∫
{ϕ (x, y, ξ (x, y)) grad gp − gp

grad ϕ (x, y, ξ (x, y)) } n d S.

In the integral formula gp has a singularity of
1
ε

and its gra-

dient
∣∣grad gp

∣∣ has a singularity of 1
ε2 in the rp point, where ε

marks the radius of the sphere around the rp point. The vec-
tor r = (x, y, ξ) indicates an arbitrary point of the illuminated
surface. See the Fig. 1.

In the integral n means the normal vector of the investigated
surface element in the r point and the dS is the magnitude of the
surface element. One of the most familiar possible gp function
is [7]:

gp =
eik (r−rp ))

|r−rp|
−

eik (r−rp−)
|r−rp−|

=
eik R

R −
eik R′

R′

where R =
∣∣r − rp

∣∣ and R′
=
∣∣r − rp−

∣∣ .
while r =

 x
y
ξ (x, y)

 arbitrary point of the investigated

surface

rp =

 x p

yp

z p

 any observation point in the right half space

rp− =

 x p

yp

−z p

 mirror vector of rp with respect to the z=0

plane.
The k indicates the wave number of the illuminating wave

k =
2π

λ
.

Since at the ultrafine machining the |ξ (x, y)| � λ so if
the

(
z p � λ

)
observation point is in the far-field then the

gp (x, y, ξ (x, y)) � 0. This statement can be easily proved
since in this case R =

∣∣r − rp
∣∣ and R′

=
∣∣r − rp−

∣∣ are high
accuracy equals.

Using the expansion of R and R′

R =

√(
x − x p

)2
+
(
y − yp

)2
+
(
ξ (x, y) − z p

)2
and
R′

=

√(
x − x p

)2
+
(
y − yp

)2
+
(
ξ (x, y) + z p

)2
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Fig. 1.

after certain algebraic transformation

R =
(
z p − ξ (x, y)

) √
1 +

(
x−x p
z p−ξ

)2
+

(
y−yp
z p−ξ

)2

and

R′
=
(
z p + ξ (x, y)

) √
1 +

(
x−x p
z p+ξ

)2
+

(
y−yp
z p+ξ

)2

If we take |ξ | 〈〈z p into consideration;

R � z p

√
1 +

(
x−x p

z p

)2
+

(
y−yp

z p

)2
and

R′ � z p

√
1 +

(
x−x p

z p

)2
+

(
y−yp

z p

)2

so in this approximation R = R′. Replacing these results into
the function, we get gp (x, y, ξ (x, y)) ≡ 0. Taking this into
consideration, the integral expression becomes simpler, namely
the second term disappears in the integral formula.

ϕ
(
x p, yp, z p

)
=

1
4π

∫
S

ϕ (x, y, ξ (x, y)) grad gpn ds

Further simplification is carried out when we give the explicit
form of grad gp.

grad gp =
d

d R

(
eik R

R

)
∂ R
∂r

−
d

d R′

(
eik R′

R′

)
∂ R′

∂r
=

ik R − 1
R2 · eik R ∂ R

∂r
−

ik R′
− 1

R′2 · eik R′ ∂ R′

∂r

but
∂ R
∂r

=
r − rp

R
∂ R′

∂r
=

r − rp−

R′

Since on the surface of z = ξ (x, y), the R � R′, so re-
placing ∂ R

∂r and ∂ R′

∂r into the expression of grad gp
∣∣
S we find

grad gp
∣∣
S =

eik R′

R′

ik R′
−1

R′2

(
rp− − rp

)
.

Considering k R′
= 2π R′

λ 〉〉1, therefore beside k R′, the 1 may
be left. Writing components of rp and rp− in the expression of
grad gp, we get:

grad gp
∣∣
S =

−eik R′

R′

ik
R′

 0
0
2z p

 =
−2ik

R′

eik R′

R′

 0
0
z p

 .
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Since the grad gp |S has only z component, therefore in the di-
rect product (grad gp n d S) only the z component of n d S will
give contribution. The z component of n d S is dxdy, so the
integral takes the form:

ϕ
(
x p, yp, z p

)
= −

i
λ

∫
S

eik R′

R ′2 z pϕ (x, y, ξ (x, y)) dxdy

If the illumination happens by a limited beam and z p coordinate
of the observation point is much greater than x, y, x p and yp,
then we can use expansion of R′

R′
=

√(
x − x p

)2
+
(
y − yp

)2
+ (ξ (x, y) + z p)2

=

(
z p + ξ (x, y)

) √( x − x p

z p + ξ

)2

+

(
y − yp

z p + ξ

)2

+ 1 �

�
(
z p + ξ (x, y)

) {
1 +

1
2

[(
x − x p

z p

)2

+

(
y − yp

z p

)2
]}

Neglecting the nonlinear terms of x, y, x p and yp in the R′ we
get:

R′ �
(
z p + ξ (x, y)

) (
1 −

xx p

z2
p

−
yyp

z2
p

)
�

z p + ξ (x, y) −
xx p

z p
−

yyp

z p

If we replace 1
R′ with 1

z p
and eik R′

with eikz p · eikξ(x,y) ·

e−ikx x p
z p · e−iky yp

z p then the ϕ
(
x p, yp, z p

)
amplitude takes the

following form ;

ϕ
(
x p, yp, z p

)
= −

i
λ

·
eikz p

z p∫
S

eikξ(x,y)
· e−ikx x p

z p · e−iky yp
z p · ϕ (x, y, ξ (x, y)) dxdy

Introducing new variables x p
z p

= q and p =
yp
z p

we can get a
simpler integral formula:

ϕ
(

p, q, z p
)

= −
i
λ

·
eikz p

z p

∫
S

eikξ(x,y)
·

·e−ikqx
· e−ikpy

· ϕ (x, y, ξ (x, y)) dxdy

This integral formula gives the field-amplitude in the direction
determined by the p and q around the z axis, in the z p plane.

The field-amplitude in the integral ϕ (x, y, ξ (x, y)) is given
by the “d” point of our assumptions.

Consider a plane wave that illuminates the investigated metal
surface. Be e0 unit vector parallel with the y, z plane that is
directed in the direction of the wave vector of the plane wave.
Indicate ϑ the angle between the z axis and e0.

According to the Figs 2a, and 2b the local reflection on the
surface is determined by the normal vector and the e0, namely
the reflected propagation vector is in the plane of e0 and n. If e1

means the unit vector of the reflected beam, we can claim that

the angles between (e0 n) and (e1 n) have to be equals. So with
the aid of the Fig. 2b we can write the following equations:

e0 + e1 = 1e and e0 − n (n e0) =
1
21e.

Solving these equations for e1 we get:

e1 = e0 − 2n (n e0) .

So the reflected beam in an arbitrary point of the metal surface
has the following form:

ϕ (x, y, ξ (x, y)) = −A0eike1r where A0 is the incoming
wave amplitude. The minus sign comes from the π phase shift
occured at the reflection. This negative sign does not influence
the intensity. The surface normal vector is generated by the gra-
dient of the S = z−ξ (x, y) surface, according to the expression
n =

grad S
|grad S|

grad S =

 −
∂ξ
∂x

−
∂ξ
∂y
1

 so n =
1√(

∂ξ
∂x

)2
+

(
∂ξ
∂y

)2
+1

 −
∂ξ
∂x

−
∂ξ
∂y
1


Substitute e0 =

 0
− sin ϑ

− cos ϑ

 and n into the expression of e1

we get: e1 =

 0
− sin ϑ

− cos ϑ

+
2
(

sin ϑ ∂ξ
∂y −cos ϑ

)
√(

∂ξ
∂x

)2
+

(
∂ξ
∂y

)2
+1


∂ξ
∂x
∂ξ
∂y
−1


Leaving the first and the second power of

∂ξ

∂x
and

∂ξ

∂y
, we find

for e1 =

 0
− sin ϑ

cos ϑ

.

Writing this unit vector into the expression of
ϕ (x, y, ξ (x, y)) = −Aeike1r we get;

ϕ (x, y, ξ (x, y)) = −A0eike1r
= −A0eik(−y sin ϑ+ξ(x,y) cos ϑ)

Substitute this into the integral formula that gives the following
result for the amplitude ϕ

(
q, p, z p

)
ϕ
(
q, p, z p

)
= i

A0

λ
·

eikz p

z p∫
S

eikξ(x,y){1+cos ϑ}
·e−iky sin ϑ

· e−ikqx−ikpydxdy

Since kξ (x, y) = 2π ξ(x,y)
λ and at the ultrafine machin-

ing |ξ (x, y)| 〈〈λ, therefore the function eikξ(x,y){1+cos ϑ} can
be expanded in Taylor series so eikξ(x,y){1+cos ϑ} � 1 +

ikξ (x, y) {1 + cos ϑ}. Replacing this into the integral formula
leads to:

ϕ
(
q, p, z p

)
= i

A0

λ
·

eikz p

z p∫
S

[1 + ikξ (x, y) {1 + cos ϑ}] · e−ikqx
· e−ik(p+sin ϑ)ydxdy

So the integral breaks up two terms:

ϕ
(
q, p, z p

)
= i

A0

λ

eikz p

z p

∫
S

e−ikqx
· e−ik(p+sin ϑ)ydxdy−
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−
A0

λ

eikz p

z p
k (1 + cos ϑ)

∫
S

ξ (x, y) · e−ikqx
· e−ik(p+sin ϑ)ydxdy

The light intensity is given by ϕ
(
q, p, z p

)
·ϕ∗

(
q, p, z p

)
namely∣∣ϕ (q, p, z p

)∣∣2 = ϕ
(
q, p, z p

)
ϕ∗
(
q, p, z p

)
=

=
A2

0
λ2

1
z2

p

∫
S

∫
S

e
−ikq(x−x ′)

· e−ik(p+sin ϑ)(y−y′)dxdy dx ′dy′
−

−i
A2

0
λ2

1
z2

p
k (1 + cos ϑ)

∫
S

∫
S

ξ
(
x ′, y′

)
· e

−ikq(x−x ′)
· e−ik(p+sin ϑ)(y−y′)dxdy dx ′dy′

+

C.C. +
A2

0
λ2

1
z2

p
k2 (1 + cos ϑ)2

·

·

∫
S

∫
S

ξ (x, y) ξ
(
x ′, y′

)
·

·e−ikq(x−x ′) · e−ik(p+sin ϑ)(y−y′)dxdydx ′dy′

The sum of the second and third terms is equal to zero, so intro-
ducing p′

= p + sin ϑ notation leads to;∣∣ϕ (q, p′, z p
)∣∣2 =

=
A2

0
λ2

1
z2

p

∫
S

∫
S

e
−ikq(x−x ′)

e−ikp′(y−y′)dxdy dx ′dy′
+

+
A2

0
λ2

1
z2

p
k2 (1 + cos ϑ)2

·

·

∫
S

∫
S

ξ (x, y) ξ
(
x ′, y′

)
· e

−ikq(x−x ′)
· e−ikp′(y−y′)dxdydx ′dy′

Integrating on all directions
(
q, p′

)
then we can make the inte-

gration over x ′ and y′, we obtain the following formula:∫ ∣∣ϕ (q, p′z p
)∣∣2dp′dq =

A2
0

λ2z2
p

(
2π

k

)2

F+

+
A2

0
λ2

1
z2

p
k2 (1 + cos ϑ)2

(
2π

k

)2 ∫
S

ξ2dxdy

where F is the illuminated metal surface. At the integration over
the p′ and q we utilized the relations;∫

e−ikq(x−x ′)dq =
2π

k
δ
(
x − x ′

)
and∫

e−ikp′(x−x ′)dp′
=

2π

k
δ
(
y − y′

)
.

In all two terms writing in
(

2π

λ

)2

= k2 we get;

∫ ∣∣ϕ (q, p′, z p
)∣∣2dp′dq =

A2
0

z2
p

F +
A2

0
z2

p
k2 (1 + cos ϑ)2

∫
S

ξ2 (x, y) dxdy.

The first term on the right hand side is proportional to the power
of the beam propagating in direction of reflection and the second
term is proportional to the power diffracted all different direc-
tions.

Introducing the Pr = α
A2

0
z2

p
· F reflected and Pd =

α
A2

0
z2

p
k2 (1 + cos ϑ)2 ∫

S
ξ2 (x, y) dxdy diffracted powers where α

is an conversation constant, we can write the ratio of Pd and Pr

Pd

Pr
=

k2
√

(1 + cos ϑ)2

F

∫
S

ξ2 (x, y) dxdy.
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Fig. 3.

If we introduce the Rq =

√
1
F

∫
S

ξ2 (x, y) dxdy true average

surface roughness, we can rewrite the former equation for
Pd

Pr
;

Pd

Pr
= k2 (1 + cos ϑ)2 R2

a .

Expressing the Rq from this equation we get:

Rq =
λ

2π

√
Pd

Pr
·

1
(1 + cos ϑ)

The result shows us that in case of the ultrafine machining, the
measurement of the true roughness is reduced to the measure-
ment of the reflected and diffracted powers.

3 Realization of ultrafine optical roughness measure-
ment
A practicable application version of the method is seen on

Fig. 3.
The investigated surface is illuminated by a collimated beam

of a laser diode under an angle of ϑ . The reflected and diffracted
amplitudes are admitted by at least λ

20 Al mirror on glass holder
with a small low reflection spot in the middle. The small low
reflection spot prevents the CCD camera from the saturation,
and serves as a low space frequency filter. The lens after this
mirror secure the farfield observation on the camera screen, that
is placed in the focal plane of the former lens. The optical axis
of the lens is co-linear with the reflected beam and intersects the
center of the camera screen.
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