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Abstract
The microstructure of machined metals change near the tool

affected zone. This paper presents some new results concern-
ing mirror-like surface cutting of aluminum and copper. The
microstructure of aluminum and copper represents the poly-
crystalline mild metals with face centered cubic (fcc) crystal
lattice. The examination of mirror-like surface by optical mi-
croscopy, scanning electron microscopy, electron backscattered
diffraction (EBSD) and atomic force microscopy show the grain
boundaries and twin boundaries, which separates two domains
for different crystal orientation. Young’s modulus that depends
on orientation can change considerably on these boundaries,
consequently the value of elastic deformation of the layer under
machined surface. This effect modified the roughness too. Alu-
minum and copper were cut as “conventional” micro-structured
metals used in everyday practice and after so called ECAP pro-
cess with ultrafine-crystalline structure, for examining effects of
crystal size on machinability and surface integrity of machined
mirror surfaces. Results of these comparative experiments are
discussed in this paper.
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1 Introduction
Developments in the engineering industry and the high qual-

ity of its products make necessary the continuous improvement
of the manufacturing processes involved and their economic ef-
ficiency.

Owing to the increased accuracy and quality of machined
parts, investigations of the effect of cutting on the base mate-
rial structure and its mechanical properties become absolutely
necessary. It is well-known that material is plastically deformed
under a cut surface and therefore its properties are changed. The
effect of the material and its microstructure on the surface finish
is especially strong when cutting ultraprecision mirror like sur-
faces. Mirror surface structural changes, such as grain bound-
aries on embedded phases, different orientations and anisotropy,
may be observed leading to uneven surfaces. Deviations in ma-
terials structure always occur on the cut surface and therefore it
is absolutely essential to investigate their effect, when machin-
ing very fine surfaces [5].

During ultraprecision cutting, due to very small chip sections,
very often single crystals are cut. There is much research on sin-
gle crystals that demonstrates that the chip undergoes much big-
ger and inhomogeneous plastic deformation than the cut surface
layer, while plastic deformation takes place in some determined
layers of the material (Fig. 1).
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Fig. 1. Microcut surface by microscope (500X) Fig. 1. Microcut surface by microscope (500X)
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Machining of micro structured copper and aluminum for ana-
lyzing effects of anisotropy, crystal lattice and mechanical be-
havior of different materials cutting experiments were made.
The Al and Cu specimens were fixed on a disk at diameter 160
mm in the chuck of the lathe, so the traces of the tool paths could
be considered as parallel straight lines.

When machining mirror like surfaces the bigger the
anisotropy of the modulus of elasticity of the material, the
greater the surface roughness. However, the surfaces integrity
is affected not only by the anisotropy of crystalline structure
but also by all the parameters of plastic deformation involved.
Therefore, the determination of structural changes occurring
during ultra precision machining, together with the increased
temperature in the machined surface layer may be useful for es-
timating the surface integrity of machined component.

The work utilized in cutting is a function of the plastic defor-
mation of the material. Elastic deformation vanishes when the
cutting tool moves away and the temperature increases. About
10% of the work spent for plastic deformation results in an in-
crease in dislocations density, while the rest is used in increasing
the temperature.

2 Surface roughness in microturning at copper
Two important material properties of copper are its cubic

face-centered atomic lattice structure, and intense anisotropy.
The Young modulus of copper is changing from E = 66.71·103

N/mm2 to E = 192.33·103 N/mm2 depending on the orientation
of crystal planes. The smallest value can be measured in the
<100> direction, while the largest value is in the <111> crys-
tallographic direction. The variation of other mechanical mate-
rial properties, such as relative strain (ε), tensile strength (Rm)
and the modulus of shear elasticity (G), similar to the Young
modulus [3]. These facts are corresponding to single crystals.
In case of polycrystalline materials the values above are only
relevant inside crystal boundaries, accordingly inside individual
crystal. During conventional cutting, the shear, plastic deformed
zone is much greater than the average crystal dimensions; hence
gliding is taking place over crystal boundaries.

In spite of this in micromachining and/or ultraprecision cut-
ting the chip root dimensions are significantly smaller than the
average grain size, which means that gliding is taking place in-
side the crystal boundaries. Since the crystallographic orienta-
tions of the grains are different, this anisotropy causes a change
in the generated force during the cutting of different grains. Af-
ter the cutting tool goes past, the grains spring back to different
extents due to the elastic deformation. The effect is described on
Fig. 2 after Moriwaki [1].

On the basis of the model many sections of the machined sur-
face topography can be explained, however it does not give an
explanation to the event that the large roughness peaks often
originate in crystal boundaries. Spenrath’s [2] explanation for
this effect is that due to the stress field before and under the
cutting tool dislocations start inside the grain boundaries, which
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served. Twins seen in the domain marked E is shown on Fig. 4 made by EBSD tech-
niques. In the unit triangle of the stereographic pole figure, which is seen on Fig. 5 iden-
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On the Fig. 6 one can see surfaces of Fig. 4 marked identically, showing clearly that 
tool, crossing crystal domains with different orientations changes the surface roughness 
to a less extent. As a result metallographic features become observable without any 
usual preparation only under effect of Nomarski differential interference contrast mode 
(N-DIC) of optical microscopy [13, 15]. 
 

Fig. 2. The anisotropy of the materials and the spring-back effect (after
Moriwaki [1])

are blocked at the crystal boundaries. The dislocations are piled
up at crystal boundaries and increase locally the strength of the
material. When the crystal boundary is cut, a larger force is
produced, which induces greater elastic deformation, and this
increased elastic deformation causes larger local spring back.
Most of the effects can be explained with the theory of disloca-
tion migration [4], but it still leaves some questions open. For
example roughness peaks cannot be found at all the grain bound-
aries [6–8].

3 Surface of copper specimens
On the Fig. 3 etched macroscopic image of original state of

the soft copper specimen is shown. In internal parts of its crys-
tallites twins with parallel boundaries could be observed. Twins
seen in the domain marked E is shown on Fig. 4 made by EBSD
techniques. In the unit triangle of the stereographic pole fig-
ure, which is seen on Fig. 5 identically marked poles of different
domains (grains or twins) show their surface normals. On the
Fig. 6 one can see surfaces of Fig. 4 marked identically, showing
clearly that tool, crossing crystal domains with different orienta-
tions changes the surface roughness to a less extent. As a result
metallographic features become observable without any usual
preparation only under effect of Nomarski differential interfer-
ence contrast mode (N-DIC) of optical microscopy [13, 15].

Fig. 7.a made on mirror-like surface of copper specimen
demonstrates, that the trace of the tool changes in every case,
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Fig. 3. Macroscopic image of original state of 
the annealed copper specimen. 

 

Fig. 4. EBSD image quality map  
of the detail E on the Fig. 2. 

 
Fig. 5. Pole figure showing orientation of crys-

tallites and twins marked on Fig. 3. 
 

Fig. 6. N-DIC image of detail showing on 
Fig. 3 after ultra precision machining. 

 
Fig. 7a made on mirror-like surface of copper specimen demonstrates, that the trace of 
the tool changes in every case, when it crosses grain or twin boundary with changing 
crystallographic properties of domains to be machined. On the Fig. 7a tool, moving 
from right to left, crosses at first a crystallite, then in the new crystallite it cuts the sur-
face of a twin, making observable its both boundaries. Fig. 7b made by atomic force 
microscopy (AFM) shows the 3D plot of a grain boundary on mirror cut surface of cop-
per [16].  

 

 
Fig. 7a. N-DIC image of twin boundaries and 

grain boundaries on mirror cut surface. 
 

Fig. 7b. 3D plot of a grain boundary on 
mirror cut surface. 

Fig. 3. Macroscopic image of original state of the annealed copper speci-
men.

when it crosses grain or twin boundary with changing crystallo-
graphic properties of domains to be machined. On the Fig. 7.a
tool, moving from right to left, crosses at first a crystallite, then
in the new crystallite it cuts the surface of a twin, making ob-
servable its both boundaries. Fig. 7.b made by atomic force
microscopy (AFM) shows the 3D plot of a grain boundary on
mirror cut surface of copper [16].

We get similar results with Al. Size, orientation and moduli E
and G have determinative effect on surface integrity during the
machining.

4 Experiments with ultrafine-structured metals
The cutting experiments were made with submicron-

crystallines Al and Cu ultrafine-crystallines structure was
achieved as result of high rate of plastic deformation. In this
paper author deals only with experiments on Al. For achieving
ultrafine-structure the equal-channel angular pressing method
was applied.

Equal-channel angular pressing (ECAP) is a processing
method in which a metal is subjected to intense plastic straining
through simple shear without any corresponding change in the
cross-sectional dimensions of the sample. This procedure may
be used to create ultra fine grain sizes in bulk polycrystalline
materials.

The principles of the ECAP process have been examined with
reference to the distortions introduced into a sample as it passes
through an ECAP die with special attention to the effect of ro-
tating the sample between consecutive passes. Significant dis-
tortions of the grain structure occurred when a sample passed
through a standard ECAP die, so when a sample is pressed repet-
itively through the die, it has been recognized that the over-
all shearing characteristics within the crystalline sample may
be changed by a rotation of the sample between the individual
passes. The repetitive pressing of the same sample is gener-
ally carried out in order to attain very high imposed strains. At
the same time there is an opportunity to rotate the sample be-
tween consecutive pressings in order to activate different shear
planes and directions, thus enhancing the mechanical properties
at room temperature by applying different routes [9, 10].

It is well-known that plastic deformation induced by conven-
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tional forming methods can significantly increase the strength
of metals. However, this increase is usually accompanied by a
loss of ductility. It has been found recently that materials pro-
cessed by ECAP after certain number of passes show high duc-
tility along with high strength. Such unusual behavior of mate-
rials, which is in contradiction with ’classic’ tendencies to lost
ductility with increased strength, needs to be understood deeper.
In this paper the effect of different routes of ECAP techniques
on the strength and the ductility of an Albased alloy is investi-
gated. The mechanical behaviour is related to the characteristic
features of the ultrafine-crystalline microstructure formed dur-
ing ECAP deformation [11].

The material used in this study was a commercial Al-Mg-
Si alloy (Al 6082). The main components of the alloy are Al
(97%), Si (0.7–1.3%), Mg (0.6–1.2%) and Mn (0.4–1%). Before
the ECAP deformation, the material was annealed at 420◦C for
40 minutes. Specimens in this condition were regarded as the
as-received material. Cylindrical billets of 15 mm in diameter
and 145 mm in length were pressed through the ECAP die with
90◦C intersecting channels. Four and eight passes were com-
pleted by the following routes: BC (rotation of the billet around
its longitudinal axis after each pass by 90◦C clockwise), BA (ro-
tation of the billet around its longitudinal axis after each pass by
90◦C clockwise and counterclockwise, alternatively) and C (ro-
tation of the billet around its longitudinal axis after each pass by
180 ◦C, clockwise). The temperature of deformation was 293 K
and the displacement rate of the billet was 8 mm/min [12, 14].

It was found that ultrafine-sized microstructure (mean crystal-
lite size ∼ 80 nm) with high dislocation density (3×1014 m−2)

was achieved even after the first pass. The microstructure was
refined only slightly during further ECAP passes. At the same
time the dislocation density increased with the increase of ECAP
deformation up to 4 passes. The dimensionless dislocation ar-
rangement parameter, M, has a value of 4.0 ± 0.4 for the as-
received specimen and it decreased to 2.2 ± 0.3 after 8 ECAP
passes. This indicates that the dipole character of the dislocation
structure became stronger with increasing deformation.
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5 Surface integrity measurement
The effect of crystal size and the ECAP process on the surface

integrity was investigated by making mirror-like cylindrical and
flat surfaces, using turning. An ultra-precision lathe (Csepel UP-
1) and Winter mono-crystalline diamond tool were used in these
experiments.

The turning process has been applied to every specimen with
the same cutting conditions.

The set machining parameters were:
cutting speed (vc) 78 m/min
feedrate (f) 5 µm/rev
cutting edge radius (rβ) 50 nm.

The sample surfaces, prepared by ultra-precision machining,
demonstrated interesting changes. The original surface quality
was nearly identical to that after the fourth pass. After eight
passes, however, the surface roughness dropped by a factor of
five, further reflecting the effect of the structural changes. In
turning experiments after eight steps of pressing – under equal
cutting conditions – cut surface roughness reduced by a factor
of five on average (from Ra = 55 to Ra = 10).

The results can see on the next table (Table 1).

Tab. 1. Forming of surface roughness in function of ECAP number

No. of ECAP Average surface

roughness (Ra, nm)

Surface roughness

(Rz, nm)

0 49,6 283,1

1 54,8 402,9

4 53,3 272,7

8 9,5 70,87

Surface roughness was measured with Atomic Force Micro-
scope (Fig. 8). The results are very interesting and very promis-
ing: surface finish of the cut raw part had the same value.

6 Conclusions
For getting mirror like surfaces with ultrafinemeter size pa-

rameters of surface integrity one have to eliminate the influence

 4

Fig. 3. Macroscopic image of original state of 
the annealed copper specimen. 

 

Fig. 4. EBSD image quality map  
of the detail E on the Fig. 2. 

 
Fig. 5. Pole figure showing orientation of crys-

tallites and twins marked on Fig. 3. 
 

Fig. 6. N-DIC image of detail showing on 
Fig. 3 after ultra precision machining. 

 
Fig. 7a made on mirror-like surface of copper specimen demonstrates, that the trace of 
the tool changes in every case, when it crosses grain or twin boundary with changing 
crystallographic properties of domains to be machined. On the Fig. 7a tool, moving 
from right to left, crosses at first a crystallite, then in the new crystallite it cuts the sur-
face of a twin, making observable its both boundaries. Fig. 7b made by atomic force 
microscopy (AFM) shows the 3D plot of a grain boundary on mirror cut surface of cop-
per [16].  

 

 
Fig. 7a. N-DIC image of twin boundaries and 

grain boundaries on mirror cut surface. 
 

Fig. 7b. 3D plot of a grain boundary on 
mirror cut surface. 

Fig. 6. N-DIC image of detail showing on Fig. 3 after ultra precision ma-
chining.

 4

Fig. 3. Macroscopic image of original state of 
the annealed copper specimen. 

 

Fig. 4. EBSD image quality map  
of the detail E on the Fig. 2. 

 
Fig. 5. Pole figure showing orientation of crys-

tallites and twins marked on Fig. 3. 
 

Fig. 6. N-DIC image of detail showing on 
Fig. 3 after ultra precision machining. 

 
Fig. 7a made on mirror-like surface of copper specimen demonstrates, that the trace of 
the tool changes in every case, when it crosses grain or twin boundary with changing 
crystallographic properties of domains to be machined. On the Fig. 7a tool, moving 
from right to left, crosses at first a crystallite, then in the new crystallite it cuts the sur-
face of a twin, making observable its both boundaries. Fig. 7b made by atomic force 
microscopy (AFM) shows the 3D plot of a grain boundary on mirror cut surface of cop-
per [16].  

 

 
Fig. 7a. N-DIC image of twin boundaries and 

grain boundaries on mirror cut surface. 
 

Fig. 7b. 3D plot of a grain boundary on 
mirror cut surface. 
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Fig. 7.b. 3D plot of a grain boundary on mirror cut surface.

of crystal orientation, different moduli of elasticity, anisotropy.
The only possibility is to decrease the sizes of crystallines up to
100nm. They should be less, than active edge of cutting tool. In
this case the tool edge is crossing many crystallines in one pass
(feedrate is several µm), and influences of different crystals neu-
tralize those of each other.
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Fig. 8. Microscopy explosures in function of ECAP number 
 

6. Conclusions 
 

For getting mirror like surfaces with ultrafinemeter size parameters of surface in-
tegrity one have to eliminate the influence of crystal orientation, different moduli of 
elasticity, anisotropy. The only possibility is to decrease the sizes of crystallines up to 
100nm. They should be less, then active edge of cutting tool. In this case the tool edge 
is crossing many crystallines in one pass (feedrate is several µm), and influences of dif-
ferent crystals neutralize those of each other. 
 

References 
  
[1] MORIWAKI- T. OKUDA, K. (1989), Machinability of Copper in Ultra-Precision Micro Diamond 

Cutting, Annals of the CIRP, Vol. 38/1/1989, pp. 115-118;   
[2] SPENRATH, N.M., (1991), Technologische Aspekte zum Feinstdrehen von Kupferspiegeln, Diss. 

RWTH Aachen;  
[3] PROHÁSZKA, J., (1997), The Effects of the Anisotropy of Young’s Modulus on the Beginning of 

Plastic Deformation, Proceedings of IMMM ’97, Mie University Press; pp. 13-20 
[4] VON TURKOVICH BF- BLACK JT (1970), Micro-machining of Copper and Aluminium Crystals, J. 

Eng. Ind. 92; pp. 130-134 
[5] KOMANDURI-CHANDRASEKARAN RN, RAFF LM, (1999), Orientation Effects in Ultrafine met-

ric Cutting of Single Crystal Materials: An MD Simulation Approach.” Annals of CIRP;  
[6] GRABCHENKO A- HORVÁTH M- MAMALIS AG- MÉSZÁROS I- PAULMIER D, (1999), Ultra-

precision Machining of Mirror-Surfaces. OSIN’99, Krakow; pp. 189-205 
[7] MAMALIS AG- PROHÁSZKA J- MÉSZÁROS I, (2000), The Effect of the Anisotropy of the Mate-

rial on the Surface Topography in Case of Ultraprecision Machining, 1stEUSPEN Topical Confer-
ence on Fabrication and Metrology in Ultrafinetechnology, Copenhagen;  

[8] NYÍRŐ J- MAMALIS AG- PROHÁSZKA J- MÉSZÁROS I, (2001), Analysis of Ultraprecision 
Turned Mirror Surfaces, EUSPEN 2nd International Conference, in Turin; 2001.05.28-2001.05.31., 
pp. 718-721. 

 [9] J.GUBICZA-GY. KRALLICS- I. SCHILLER- D. MALGIN (2005), Evolution of the microstructure 
of al 6082 alloy during equal-channel angular pressing, MATERIALS SCIENCE FORUM; 473-474: 
pp. 453-457 

[10] GY. KRALLICS- D. MALGIN- A. FODOR, (2005), Experimental investigations of the al 6082 al-
loy subjected to equal-channel angular pressing, MATERIALS SCIENCE FORUM; 473-474: pp. 
129-134. 

[11] M TAKÁCS-I MÉSZÁROS-B VERŐ-GY KRÁLLICS-J DOBRÁNSZKY-T TÖRKÖLY, (2007), 
Machining of Ultra-Fine Grained Materials. In: VI. Hungarian Materials Science Conference. 
Siófok; Magyarország, 2007.10.14-2007.10.16. 

Fig. 8. Microscopy explosures in function of ECAP number

References
1 Moriwaki T, Okuda K, Machinability of Copper in Ultra-Precision Mi-

cro Diamond Cutting, Annals of the CIRP 38/1 (1989), 115-118, DOI
10.1016/S0007-8506(07)62664-X.

2 Spenrath N M, Technologische Aspekte zum Feinstdrehen von Kupfer-

spiegeln, 1991. Diss. RWTH Aachen.
3 Prohászka J, The Effects of the Anisotropy of Young’s Modulus on the Be-

ginning of Plastic Deformation, Proceedings of IMMM ’97, Mie University
Press, 1997, pp. 13-20.

4 Von Turkovich B F, Black J T, Micro-machining of Copper and Aluminium

Crystals, J. Eng. Ind. 92 (1970), 130-134, DOI 10.1115/1.3427697.
5 Komanduri-Chandrasekaran R N, Raff L M, Orientation Effects in Ul-

trafine metric Cutting of Single Crystal Materials: An MD Simulation Ap-

proach., Annals of CIRP (1999).
6 Grabchenko A, Horváth M, Mamalis AG, Mészáros I, Paulmier D,

Ultraprecision Machining of Mirror-Surfaces, OSIN’99, Krakow, 1999,
pp. 189-205.

7 Mamalis AG, Prohászka J, Mészáros I, The Effect of the Anisotropy of

the Material on the Surface Topography in Case of Ultraprecision Machin-

ing, 1stEUSPEN Topical Conference on Fabrication and Metrology in Ultra-
finetechnology, Copenhagen, 2000.
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