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Abstract
In the course of shape optimization in an integrated

CAD/FEM environment, finding of appropriate bounds of the
shape parameters, has a principal importance: on one hand,
non-recoverable geometries and structural model are to avoid,
on the other hand, valid combination of shape parameters must
not be excluded because they may include the optimum. To
resolve this contradiction, a transformation is introduced to
project the variable dimensions of the geometry onto the n di-
mensional unit cube, so these normed design variables are used
in the course of the optimization. In simpler cases this transfor-
mation can be derived from the limit relations of the geometry
construction as it is shown on the optimization example of a
handhold used in public transport.
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1 Introduction
Earlier on, shape optimization in the machine element design

could be performed mainly for structural components with sim-
ple geometry by the programs available: optimization was per-
formed by changing a few size parameters or the node coordi-
nates of the structural model [1, 2].

Newly there are a large number of methods and techniques
for solving a variety of shape optimization problem [3].

FE model based optimization allows for changing the geome-
try of the body inspected only in smaller steps as a result of mesh
changes, even by applying adaptive mesh technique [4]. By the
integration of parametric CAD systems and FE systems with an
automatic mesh generator the design variables can be altered in
a wide range in a single step as the geometrical and structural
model are rebuilt in each step. Another advantage of applying
CAD dimension related design variables is, their impact can be
exerted not only in a small local area of the body, but they can
change the geometry of the body even globally [5]. Definition of
the optimization model is much faster so bodies with complex
geometry can also be studied in a short time. The great geomet-
rical changes can result topological changes, complicating the
task of preserving design goals [6]. Our purpose is to study the
impact of formulation of the optimization domain. Until now
this topic was not studied intensively, only some aspects of it as
the design model refinement was studied [7]. Having shape op-
timization problems with more complex geometry to vary, the
designer has to give a good answer to this question, independent
from the examined problem, its type of modelling or the solution
method.

2 Definition of the optimization domain
The surface of the inspected body can be drawn in a para-

metric CAD modeller by splines or other analytical functions,
and it can be made fully defined by assigning dimensions to it.
Design variables are chosen among these dimensions, having
constant limits given by the designer. It means, the optimiza-
tion domain is a rectangle in the n dimensional Euclidean space
where n is the number of the design variables. The question
arises what constants are needed to formulate an appropriate op-
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timization domain. These constants should be chosen on such a
way that all points of the optimization domain are valid, namely
the geometrical and the structural model can be rebuild. If the
topology of the geometry (the number of the surfaces and the
surface connection schema) is the same as by the initial design,
the above-mentioned two conditions for feasibility are fulfilled.
The domain of feasible points called regeneration domain. In
order to have a valid design, the optimization domain must be
a closed subset of the regeneration domain. However, the re-
generation domain is not necessarily a rectangle and therefore
a great amount of possible geometry is excluded from the opti-
mization, probably also the optimum itself. To overcome this
contradiction a mapping of the regeneration domain onto the
rectangular domain is proposed. From computing aspects the
normed design variables are advantageously used too. There-
fore we have to find a mapping of the regeneration domain onto
the unit cube of the same order. Although such a transformation
is a very powerful tool, it cannot be given generally for all kinds
of parametrization. In the case of complicated CAD models the
regeneration domain can be hardly formulated in closed form,
it can be only explored with the help of the CAD program. The
statements above are highlighted on the simplest case in the next
section.

3 Regeneration domain and design space for two vari-
ables
The following simple example highlights the problem of hav-

ing non-rectangular regeneration domain. Let us change the
shape of an L-shaped body in one coordinate direction. The
length parameters in vertical direction are allowed to change
up to a mounting limit c (geometrical constraint). Moving di-
mensions can be selected in two ways as it is shown in Fig. 1.
According to the condition that topological changes are not al-
lowed, the regeneration domains become in this case triangles
(Fig. 2).

 
Fig. 1. L shaped body (left: size chain; right: base chain)

As it is mentioned before, design variables can be changed
within constant bounds. If these limits are chosen on such a way
that the optimization domain includes the whole regeneration

domain (for chain sizes, the region bordered with dotted line
in Fig. 2, left), there a great amount of solutions will be allowed
that cannot be regenerated, therefore optimization may collapse.
On the contrary, in order to have a feasible design, a rectangular
area must be given inside of the triangle (bordered with dashed
line, Fig. 2., left). In this case a reasonable part of possible
solutions are excluded from the searching process.

All these problems can be avoided if the regeneration domain
is transformed onto the unit square range of design variables
y1, y2. Therefore design variables are also normalized, ensuring
numerically more stable optimization.

 
Fig. 2. left: regeneration domains for the L shaped body for size chain; right:

design space)

 
Fig. 3. left: Photo of the handhold; right: its CAD model

The transformation (the known Duffy transformation [8]) can
be given as follows for size chain specification:

x1 = c(y1 − y1 y2)

x2 = cy1 y2
(1)

On similar way, for base chain the regeneration domain is also a
triangle and it can be mapped on more ways to the unit square,
as previously:

x1 = cy1

x2 = c(y1 + y2(1 − y1))
(2)
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4 Optimization case study - handhold
In order to illustrate the advantages of the proposed transfor-

mation method and show the finding of the regeneration domain
and creation way of the transformation formulations, an opti-
mization example of a handhold used in public transport vehi-
cles was introduced, which was also studied with another opti-
mization model in [9].

The photo and geometrical model of the handhold are shown
in Fig. 3.

 
Figure 4.: The important filets of the 

geometry  
 

Fig. 4. The important filets of the geometry

 

 Fig. 5. Load cases

The initial geometrical model was generated by extrusion of a
plane contour supplementing by 3 filets, where R1 is the radius
of the fillet of the outer contour, R2 is the radius of the inner one
and R3 is the radius of the fillet at the root of the arm (Fig. 4).
These fillets are driven by the following equations in order to

retain the proportion of the geometry:

R1 = D4/4 (3)

R2 = D1/4 (4)

R3 = (15 − D4)/2 (5)

where D1 and D4 are shown in Fig. 3, right.
By the structural model two load cases were taken into con-

sideration (Fig. 5 ): a 800N tension in axial direction (load case
1) and a 30N force on each of the two rounded surfaces of the
handhold, actually representing a torsion (load case 2). (Al-
though, theoretically, a situation can occur where the two loads
have a joint impact on the optimum studied, in our assumption
the load cases have a separate impact on the object examined
so as to present the potentials of the optimization system.) The
examined body was fixed on the hole in all degrees of freedom.
In a closed environment of the smallest fillet (R3) geometry re-
lated mesh refinement was used for the better approximation of
the stress concentration. In the FE model linear tetrahedron el-
ements were used for the discretization of the structure, linear
static elastic material properties of the polypropylene were taken
into consideration.

In the optimization model the volume was chosen as an ob-
jective function, to be minimized. The displacement type opti-
mization constraints were set to 3 mm in the first load case and
to 7 mm in the second load case while the stress optimization
constraint was set to 30 MPa in both cases. Fig. 3, right shows
the changing sizes: the size perpendicular to the handhold plane
(D1); section width of the arched part (D2); width (D4) and
length (D8) of the arm.

Using the given geometrical representation and structural
model, let the variable dimensions be the design variables themt-
selves, and the optimization domain is given between 50% and
150% of the initial value for each variable. Unfortunately, the
optimization loop break at the third iteration step as the geome-
try and the structural model is unrecoverable due to the resulted
design point. Therefore other design variables must be chosen
to overcome such problems.

If a mapping could be found between the regeneration do-
main of the problem and a normalized 4 dimensional rectangu-
lar space, the latter variables could be used as convenient de-
sign variables for the optimization. Therefore our task is first to
explore the regeneration domain for the problem and then con-
struct its mapping onto the unit cube.

5 Regeneration domain
By giving the regeneration domain in closed form, the depen-

dency of the bounds for the variable dimensions must be found
out. At the beginning an independent size must be found from
the other variable dimensions. In general, thickness of the ex-
trusion (D1) is a suitable choice.

There is no special condition for the lower limit (of course it
should be positive); the upper limit will be 15 mm because of
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R3 must be positive, see Eq. (5):

0 < D4 < 15 (6)

Thickness size D1 must be greater than 2R1 in order to avoid the
change in the surface topology; the rest of changing dimensions
does not exert any influence to the bounds of handhold thick-
ness. Geometry regeneration is ensured according to equation
(3) by the condition:

D4/2 = 2 R1 < D1 < ∞ , (7)

which prohibits the disappearance of the surface between the
two delimiting fillets. D1 should not be increased beyond all
limits because the volume increases linearly with D1, therefore
its value was limited to 25 mm:

D4/2 < D1 < 25 (8)

The remaining two variable sizes are included in the plane of the
contour drawing.

By setting the upper limit of D2, it is considered that the
volume increases for larger D2 values, therefore the maximum
value was set to 30 mm. The lower limit of D2 can also be de-
rived from the conservation of the surface between the fillets of
R1 and R2.

0 < D2 − (R1 + R2) (9)

Concerning Eqs. (3) and (4), the interval for D2 is the following:

(D1 + D4)/4 < D2 < 30 (10)

The lower limit of the arm length D8 is not critical, but it should
naturally be positive. When specifying the upper limit, it should
be taken into consideration that the length of the tangent line of
circles R10 and R35 shown in Fig. 3 right, should not become
zero. There are two ways to determine this correlation: either
from the geometrical interrelations or experimentally with the
sketcher that also offers approximation procedures for specifica-
tion of the regeneration limit. In complicated cases it is difficult
to specify the interaction of the sizes analytically, and the ap-
proximation of the regeneration limit with a given accuracy (in
the example, the size change is phased to 1 mm) is sufficient for
most engineering problems. The approximation procedure was
used in this case as well. The D4 dependence of the function to
be found is small, therefore it is neglected, and D2 dependence
can be substituted by a linear function:

0 < D8 < 100 − D2. (11)

It should be mentioned, that the inequalities defining the regen-
eration domain are so constructed, that there is no cross linked
dependency between the limits. The transformation then can be
constructed due to appropriate arrangement of them and fitting
the variables.

6 Transformation
The regeneration domain is given by inequalities (6), (8), (10)

and (11) the transformation should be specified in form of equa-
tion (12):

x = F (y) , (12)

where y is the vector of the new design variables and x is the
vector of the changing dimensions (D1,D2,D4,D8).

Matching y1 to D4, a simple scaling can be used. By the sec-
ond inequality pair, first we have to scale to one with the upper
limit, and than we order the lower bound to zero. Matching it
to y2 and substituting the first transformation equation for D4,
the second transformation equation is given. On a similar way
the other two equations can also be determined. It must be men-
tioned, that this technique works in case if the bounds are not
cross dependent.

The correspondent relations of changing sizes and design
variables are summarized:

D4 = 15y1

D1 =
15
2

y1 + 25y2 −
15
2

y1 y2

D2 = y3

[
30 −

(
45
2

y1 + 25y2 −
15

2y1 y2

)
/4

]
+(

45
2

y1 + 25y2 −
15
2

y1 y2

)
/4

D8 = y4

{
100 − y3

[
30 −

(
45
2

y1 + 25y2 −
15
2

y1 y2

)
/4

]
+(

45
2

y1 + 25y2 −
15
2

y1 y2

)
/4

}
The initial values are summarized in Table 1.

Tab. 1. Initial values of the optimization variables

Initial value of variable dimensions [mm] Initial values of design variables

D4ini
= 12 yini

1 =
12
15

D1ini
= 20 yini

2 =
14
19

D2ini
= 10 yini

3 =
1

11

D8ini
= 52 yini

4 =
52

100 −
1

11

Applying this projection, optimization converged with no re-
generation error in 28 steps. Results can be seen in Fig. 6.

Optimization history can be followed on Fig. 7. It shows that
as the volume is reduced considerably (33 % ), stress constraint
was activated in the bending load case, while the displacement
constraint was activated the load case causing torsion stress.

7 Conclusions
It was pointed out that the use of variable dimensions itself as

design variables are not satisfactory for successful optimization.
A condition is given to ensure the recoverability of the optimiza-
tion problem with the new design variables, independently from
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Fig. 6. Initial and optimal shape of handhold

 
Fig. 7. History of the objective function and the design variables

the geometrical representation: if the surface topology remains
the same as it was in the initial design, the problem can be built
up. This topology condition determines the domain of feasible
solutions. In the cases when this domain can be given or ap-
proximated in closed form, a transformation onto the unit cube
of the same order is to be applied advantageously, which have to
be derived individually for each problem by ordering the bounds
of the domains to each other. It was shown in a case study on
what manner the regeneration domain and the mapping can be
given, which technique can be applied in other cases as well.
The adaptability of the governing ideas are not restricted to the
special case of the mentioned shape optimization but can be ap-
plied in general: it is no mean what kind of searching techniques
or variables are used, the need of the mapping of the regenera-
tion domain to the unit cube helps to perform a successful opti-
mization without breaking or excluding valid solutions from the
searching process.
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