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Abstract

This paper considers a comparison of six wavelets for bearing fault diagnosis. Five wavelets Symlet_05, Symlet_08, Daubechies_04, 

Daubechies_06, Daubechies_08 are typical ones which are used for fault diagnosis due to several researches. The purpose is to design a 

new discrete wavelet which has higher efficiency to reveal minor defects on the bearing rings. Defects derive from either manufacturing 

or operational problems. Detecting of tiny manufacturing defects, especially manufacturing grinding marks is quite difficult due to 

their special geometrical shapes, however they can cause serious problems in machines during operation. Therefore, it is an important 

task to diagnose these marks with the most adequate methods. The transient vibration signal model of the defect is established for 

signals generated by tapered roller bearing on the outer race. The wavelet creation used the sub-optimal algorithm devised by Chapa 

and Rao. The applicability of the matched wavelet is tested for identifying this kind of bearing failure. The new wavelet analysis and 

synthesis filter coefficients are determined which define the designed wavelet. To determine the efficiency of the designed wavelet 

and to establish comparison with the other wavelets, a test-rig was constructed with high-precision measuring sensors and devices. 

By using the Maximum Energy-to-Shannon Entropy criteria the efficiency of the wavelets is determined. The designed wavelet is found 

to be the most effective to detect the manufacturing fault compared to the others in this article. The final purpose is not only to detect 

the faults but to determine their sizes. By analyzing the entry points of the rollers into the defects, the de-stressing point and the exit 

points of the rollers from the defects the width of the grinding marks is calculated. It is proved that the new-designed wavelet obtains 

the most precise way for fault width measurement. Finally, the size of the failure is measured by a contact type Mahr Perthometer to 

compare the results to the calculated parameters and validate them. The width deviation is only 1.18 % in the case of the new-designed 

wavelet which is remarkable precision level for bearing fault analysis.
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1 Introduction
Bearing faults are researched by many researchers because 
of its importance in industrial applications. Patel et al. [1] 
applied envelope method to diagnose defects of deep groove 
ball bearings. Khanam et al. [2] used Kalman and H filters to 
measure bearing faults especially in special circumstances 
where low signal-to-noise ratio made difficult to identify the 
useful components of the vibration signal. Al-Ghamd and 
Mba [3] applied acoustic (AE) method combined with the 
spectrum vibration analysis to investigate the bearing outer 
race defect width directly from the raw signal. Elforjani and 
Mba [4] proved the effectiveness of acoustic emission 
method in the case of slow-speed bearings. Sawalhi and 

Randall [5] made researches to determine the fault size of 
the bearings from the vibration signal by analyzing the entry 
and exit signals of the roller into and from the defect.

Peng and Chu [6] because proved the outstanding 
computational efficiency of the wavelets for fault fea-
ture extraction, singularity detection for signals, denois-
ing and extraction of the weak signals. Prabhakar et al. [7] 
applied discrete wavelet transform with Daubechies-4 
(db04) mother wavelets to analyze the combination of dif-
ferent faults on the races of ball bearings. Combination of 
envelope spectrum and wavelet transform for extraction 
of defect problems in bearings were used by Shi et al. [8].
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Nikolaou and Antoniadis [9] applied complex shifted 
Morlet wavelets to analyzing vibration signals generated 
by rolling element bearings.

Symlet wavelets were used efficiently in the study of 
Kumar and Singh [10]. In their study tapered roller bearings 
were analyzed to determine the fault size on the outer ring.

Tóth and Tóth [11, 12] revealed artificial faults of the 
inner rings of deep groove bearings by wavelet analysis. 
A realistic signal model of ball bearings with inner race 
fault was created to design a new wavelet to reveal the 
defect more efficiently from the vibration signature.

Junsheng et al. [13] used an impulse response wavelet to 
analyze faults in a roller bearing with CWT. Their wave-
let is simply an exponentially damped sinusoid. Sheen [14] 
effectively applied the Morlet wavelet in the envelope 
detection for the vibration signal and found it also useful 
in the defect diagnosis of bearing vibrations. The appli-
cation of the complex Morlet wavelet with SVM classi-
fier is suggested in [15] for fault diagnosis of ball bearings 
having localized defects on various bearing components. 
Liu et al. [16] suggested an automatic feature extraction 
algorithm for bearing fault diagnosis using a correlation 
filter-based matching pursuit.

Tewfik et al. [17] worked out a design method that 
matches a wavelet to the time domain form of a signal. 
Chapa and Rao [18] developed an algorithm that searches 
for a matching wavelet in frequency domain. Their method 
is capable of designing Meyer wavelets that approxi-
mate the wavelet amplitude and phase spectra separately. 
The cost function is the minima of the Mean Squared 
Error (MSE), calculated from the amplitude spectra and 
group delay of the signal and the wavelet.

Applicability of SVM is proved in different fields of 
engineering system analysis. Mankovits et al. [19] exe-
cuted the optimization of the shape of axi-symmetric 
rubber bumpers by support vector regression that shows 
the efficiency of the method in other engineering applica-
tions. Vámosi [20] solved a nonlinear classification prob-
lem of rubber elements with support vector classification. 
Manickam [21] applied soft computing methods, back 
propagation neural network for prediction of shell mould-
ing parameters that showed the efficiency of machine 
learning methods. Kalácska et al. [22] analyzed the slid-
ing properties of steels on other materials in their research 
combined with classification. Deák et al. [23] investigated 
the defect size of tapered roller bearings with wavelet 
transform by entropy optimization.

Mankovits et al. [24] analyzed the behavior of rubber 
parts under mechanical stress and applied machine learn-
ing techniques such as SVM for optimization.

Wéber and Hős [25] investigated experimental and 
numerical analysis of hydraulic transients in the presence 
of air valve.

Mallat [26] created algorithm to analyze bearing fault 
signal and make the correlation signal to the original 
parameters to reveal the defects more efficiently.

2 Methods
2.1 Wavelets, Continuous Wavelet Transform 
and Scalogram
Wavelet transform is continuous or discrete and it is cal-
culated by the convolution of the signal and a wavelet 
function. A wavelet function is a small oscillatory wave, 
which contains both the analysis and the window function. 
Continuous wavelet transform (CWT) generates the two 
dimensional maps of coefficients that is called scalogram.
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where a is the scale parameter, b is the translation param-
eter, f(t) is the signal in time domain, Ψ is the "mother" 
wavelet, and Ψ* is the complex conjugate of Ψ [9].

Discrete wavelet transform (DWT) applies filter banks 
for the analysis and synthesis of a signal. Filter banks con-
tain wavelet filters and extract the frequency content of the 
signal in the pre-determined subbands. The discrete wave-
let transform is derived from the discretization of contin-
uous wavelet transform by adopting the dyadic scale and 
translation to reduce the computational time and can be 
expressed by Eq. (2):
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where j and k are integers, 2 j and 2 j k represent the scale 
and translation parameter respectively. The original sig-
nal s(t) passes through a set of low pass and high pass fil-
ters emerging as low frequency (approximations, ai ) and 
high frequency (details, di ) signals at each decomposition 
level i. They are usually finite impulse response filters whose 
impulse response (or response to any finite length input) is 
of finite duration, because it settles to zero in finite time. 
Therefore, the original signal s(t) can be written as [10]:
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The wavelet function Ψ and scaling function φ can be 
defined as:

Ψ Ψj k
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where dj,k and cj,k are the wavelet and scaling coefficients 
at scale j [28].

Assuming the signal X[t] = (v0, ..., vN−1), the sampling num-
ber is N = 2j, where j is an integer. For Xj[t] at scale j decom-
posed to scale j − 1 of DWT model can be defined as [30]:
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The scalogram, defined as the squared magnitude of 
CWT, always has non-negative, real-valued time-frequency 
(scale) distribution. This transformation conserves energy. 
Its resolution in the time-frequency plane depends on 
the scale parameter.
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Polynomial spline functions such as Fourier transform, 
frequency response function, satisfies orthogonality condi-
tions [26]. Shannon, Meyer, Battle-Lemarie and Daubechies 
wavelet are widely applied which have compactly support.

Meyer wavelet is defined through the scaling function 
as [12, 18]
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where ʋ(ω) is a tapering function.

2.2 Matching Wavelet to a Given Signal 
Chapa and Rao [18] searched a technique which is an efficient 
method for designing Meyer wavelets to match band-lim-
ited signals. Their method directly matches a wavelet to 
the signal. It requires some pre-determined conditions on 
the wavelet spectrum amplitude and phase. The band-lim-
ited scaling function and the bandlimited are deter-
mined which are sufficient conditions for an Orthonormal 
Multiresolution Analysis (OMRA). They also derive con-
straints on the structure of the wavelet phase. The match-
ing algorithm is sub-optimal which means it matches to the 
wavelet amplitude and phase independently [12].

2.3 Matching Wavelet Amplitude
Discrete form of the refinement equation should be used 
that can be expressed from a wavelet [18]:
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Chapa and Rao [18] determined the wavelet spectra 
ψ ω( )ˆ  to prove the orthonormality and an error function:
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The algorithm searches for the extreme value of cost 
function in a discrete form. Symmetric property of the 
wavelet function is described by Eq. (12)
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where αik ∈{ }0 1 2, , . This equation can be expressed in 
matrix form as AY = 1, where
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The error function can be given in Eq. (13):
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Matching amplitudes can be expressed by Eq. (14):
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2.4 Matching Wavelet Phase
Mean-square error (MSE) criteria is applied for phase 
matching which is similar to amplitude matching, how-
ever it uses group delay of the signal.

The group delay of a signal is defined as the first order, 
negative derivative of the phase
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Specific constraints on the structure of the wavelet phase, 
can be expressed in terms of the phase of the scaling function
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where θϕ is the phase of scaling function ϕ(ω) and θψ is the 
phase of wavelet ψ(ω).

The wavelet phase is a symmetric, 2π periodic function. 
The method models one period of the negative of the group 
delay, denoted by λT(ω) as a polynomial of order R [18]:

λ ω ω
ω

T
r

R

r
rc( ) ,= 








=
∑

0

2
2

2
Π  (17)

where

λ ω τ ω

ω
ω

( ) ( )

( )
,

,

= −

− ≤ <





=

Π
1

1

2

1

2

0 otherwise

polynominal coecr ffficients.

By replicating one period of the group delay at every 
2π interval, the group delay of the wavelet is modelled as 
the 2π periodic polynomial of order R [11] in discrete it 
can be written as
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With vector notation, the group delay is expressed as
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Negatives of the group delays ΛΨ  and Λφ  can be 
expressed in terms of λ(ω).
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The matching process minimizes the weighted error 
between the group delay of the wavelet ΓΨ  and the desired 
signal ΓF  [11, 18]. The approximation is performed only 
in the pass-band, thus a weighting function Ω(n) is calcu-
lated from the result of the amplitude matching process
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The optimal values of the polynominal coefficients can 
be obtained by solving Eq. (23):

∇ =cγ 0.  (23)

2.5 Matching a Wavelet to Signal Model of 
Bearing Vibration
The manufacturing fault on the outer ring causes an ampli-
tude modulation that is more emphasized in the load zone. 
One of these impulses can be described as

x t A t e t fn C t
n n n( ) sin( ),= ⋅ =⋅ ⋅ ⋅− ⋅ ω ω π2

where fn is the nth natural frequency, C is a damping factor, 
A is the initial amplitude and n is an exponential behavior 
the transient.

In order to create a new wavelet basis function, we used 
1024 samples of time domain data of a transient vibration 
signal described with A = 28.74, n = 2.748, C = 17.34, and 
ω0 = 265.28 equation parameters. In order to get accu-
rate parameters, the transient signal was analyzed as 
Figs. 1-2 show.
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Using the parameters it provides close correlation to the 
envelope spectrum of the transient with minimal mean-
square error which is a sufficient optimization of the cost 
function as it is perceived in Figs. 3-4.

2.6 New wavelet design parameters
We applied Chapa and Rao's amplitude and phase match-
ing algorithm [18] on the transient signal model of the 
bearing vibration. The new wavelet amplitude spectra 
match the amplitude spectra of the transient very well in 
the passband. The MSE of the matching is 0.213. For phase 
matching we used a non-linear polynomial.

Since the new wavelet basis cannot be given in closed 
form we give the filter coefficients in Table 1. It is clear 
from the table that Quadrature Mirror Filters (QMF) have 
no compact support.

Fig. 1 Transient signal of the outer-ring grinding fault with 
its spectrogram

Fig. 2 Parameters of the measured transient signal for model creation

Fig. 3 Envelope model of the transient signal

Fig. 4 Mean Square Error of the transient from the envelope values

Table 1 New-designed wavelet filter coefficients

Synthesis filters Analysis filters

No. Lowpass 
(H0)

Highpass 
(H1)

Lowpass 
(G0)

Highpass 
(G1)

0 -0.07 0.0032 0.00 -0.0657

1 -0.14 -0.0069 -0.01 0.142

2 0.07 0.0025 0.00 0.0698

3 0.57 0.0258 0.03 -0.5680

4 0.73 0.0023 0.00 0.7290

5 0.28 -0.0529 -0.05 -0.2811

6 -0.12 -0.0375 0.04 -0.1241

7 -0.03 0.0129 0.13 0.0328

8 0.13 0.0330 -0.03 0.1300

9 0.04 -0.1230 -0.12 -0.0373

10 -0.05 -0.2810 0.28 -0.0531

11 0.00 0.7280 0.73 0.0022

12 0.03 -0.5670 0.57 0.0258

13 0.00 0.0704 0.07 0.0026

14 -0.01 0.1420 -0.14 -0.0068

15 0.00 -0.0658 -0.07 -0.0032
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Analysis and synthesis functions of the new-designed 
wavelet and the coefficients of analysis and synthesis fil-
ters are in Fig. 3. By limiting the filter coefficients to this 
range, we cannot reconstruct the original data from the 
wavelet coefficients completely. The fewer coefficients we 
use, the more error we get during reconstruction.

Zeros of G0 and H0 of the new-designed wavelet is 
shown of the Figs. 5-6.

3 Experimental test
The purpose of this paper is to apply the new-designed wave-
let for detection and fault size determination of bearings with 
real manufacturing fault. For this purpose, test-rig (Fig. 8) 
had been constructed that provides accurate measurements.

The shaft in the test rig is supported by two tapered 
roller bearings. The one under investigation is No. 30205 
tapered roller bearing. Defect on the outer race is a line 
(rectangular) shape grinding defect (Fig. 15) which is 
under analysis here. The shaft is driven by an alternating 
current motor of 0.75 kW (made by Cemer), frequency of 
50 Hz, and nominal speed of 2770 rpm which is reduced to 
1800 rpm with variable speed drive device. Rubber V-belt 
between the electric engine and the shaft provides smooth 
running and low vibration which help accurate and precise 
measurements. Rubber bumpers are installed to reduce 
vibration of the electric motor to the bearing housing in 
order to minimize harmful vibrations. The arrangement 

provides option of different speeds controlled by Schneider 
ATV32HU22M2 variable speed drive device. In the 
experiment the speed of the shaft is measured using an 
optical tachometer with digital display to check the speed 
fluctuations. Test bearing is spanned by screw mechanism 
to supply the sufficient axial force to the measurements. 
Constant spanning force during the measurements is mea-
sured by strain gauges in Wheatstone Bride mode on the 
basis of difference in voltage measurement.

NI 9234 dynamic signal acquisition is used in the exper-
iments with 4-channels to vibration measurements from 
integrated electronic piezoelectric (IEPE) and non-IEPE 
sensors. The NI 9234 delivers 102 dB of dynamic range. 
Input channels simultaneously digitize signals at rates up 
to 51.2 kHz per channel with built-in anti-aliasing filters. 
PCB IMI 603C01 vibration transducer is used which is an 
industrial type platinum stock piezoelectric sensor with low 
noise level, sensitivity of 100 mV/g and frequency range of 
0.27 to 10 kHz with top exit 2-pin connector. The acceler-
ometer is placed on the previously ground surface of the top 
of the bearing house with screw mechanism perpendicular 
to the axis of the rotation of the shaft. 32 bit AMD Athlon 
II X2 M300 2.0 GHz processor is used for data process-
ing. For visual validation of the defect sizes on the bearing 
rings Garant MM1-200 video microscope is applied that 
is an incremental measuring system, built-in image pro-
cessing with 1.3 megapixel color camera. Furthermore, 
Mahr MMQ 200 with precision roundness measuring axis, 
motorized vertical and horizontal measuring axis is used 
for roundness deviation measurement to determine both 
width and depth of the grinding marks.

Fig. 5 Analysis and synthesis functions of the new-designed wavelet

Fig. 6 Values of the analysis and synthesis filters of the  
new-designed wavelet

Fig. 7 Zeros of G0 and H0 of the new-designed wavelet

Fig. 8 Bearing test-rig with high-precision measurement devices
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Time domain of the recorded signal provide a noisy sig-
nal, however it has much higher SNR (signal-to-noise ratio) 
than a signal without using the sophisticated bearing test-rig.

Frequency domain (Fig. 9) shows a 2.09 kHz peak 
which is the frequency of the bearing components in this 
experience it is called structural frequency as well.

Since the signal of transient pulses generated by the 
grinding mark on the outer raceway of a tapered roller 
bearing was very similar to the typical analysis wavelets, 
we can conclude that wavelets are a reasonable choice that 
is sure to yield good results. However, several experiments 
proved that designed wavelets for the special faults pro-
vide much better result for fault detection and size deter-
mination than the typical Symlet, Daubechies wavelets 
which has not so specialized parameters for the actual 
fault manner on the bearing.

4 Matching wavelets and ranking by Energy-Entropy 
method
The main purpose of the experiment is to compare the 
measured transient signal to the signals generated by 
the wavelets. Figs. 10-12 show the Daubechies_08 gives 
the worst correlation to the measured signal therefore it 
is assumed to be not effective for detecting the bearing 
fault. By visual inspection it is clear that the new-designed 
wavelet provide a very good correlation to the measured 
signal. However, visual comparison is not a very precise 
method to determine the efficiency of a wavelet. For this 
purpose we used a method that provided to be a reliable 
method for wavelet efficiency analysis called Maximum 
Energy-to-Shannon Entropy criteria.

The combination of the energy and Shannon entropy 
content of the wavelet coefficients of the signal, denoted 
by Energy to Shannon Entropy ratio is an appropriate 

indicator to choose the best wavelet for diagnosis and it 
can be calculated in Eq. (24) [15]

ξ ( ) ( ) ( ).n E n S nentropy=  (24)

The energy content of signal wavelet coefficients is 
given as

E n C
i

m

n i( ) ,,= ∑
2

 (25)

where m is the number of the wavelet coefficients, Cn,i is 
the ith wavelet coefficient of nth scale.

The entropy of signal wavelet coefficients is given by
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m

i i( ) log ,= −
=
∑

1

2
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where (p1, …, pn) is the energy distribution of the wavelet 
coefficients defined by

p C E ni n i= , ( ).
2

 (27)

In this experiment, three measurements were estab-
lished as Table 2 shows E/S values were determined by 
Labview VI for this purpose from the measured signal.

Values, after calculating the mean values of E/S ratio, 
are presented in Fig. 13. It is observed that new-designed 
wavelet gives the highest value that indicates to be the 
most efficient wavelet for both fault detection and fault 
size estimation.

Fig. 9 Time domain (above) and frequency domain (below) of 
the measurement

Fig. 10 Symlet_08 wavelet (left) and db_06 (right) matching with the 
original signal

Fig. 11 db_04 wavelet (left) and Symlet_05 (right) matching with the 
original signal

Fig. 12 db_08 wavelet (left) and new-designed (right) matching with the 
original signal
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Fault detection procedures based on time-frequency 
methods usually rely on visual observation of contour 
plots. It is also known that if the wavelet matches well 
with the shape of the signal at a specific scale and loca-
tion a large transform value is obtained. However, a low 
transform value is obtained if the signal and wavelet do 
not correlate well. To avoid defects of visual observation a 
more precise way of determining the best suited wavelet is 
presented here by E/S parameters.

The scalogram (Fig. 14) clearly shows the time-fre-
quency location of transients. These pulses do not appear 
at each rotation. They seem to be random signals that 
might come from the test rig. In contrast, periodically 
repeating transient pulses are clearly seen on the scalo-
gram of the pitted bearing. Their time-period and fre-
quency can be numerically given. The application of this 
method reduces the incorrect evaluation of vibration data 
and can be a valuable supplement to conventional condi-
tion monitoring methods.

Comparing the two scalogram representations we notice 
that the new-designed wavelet provided a more realistic 
result and gave better energy concentration. The scalo-
gram calculated by the matching wavelet provided bet-
ter time localization, but its frequency localization is less 
accurate than that of the designed wavelet.

5 Bearing fault width measurement with 
optical validation
To verify the precision of the previous measurements 
image processing is applied to reveal the exact geomet-
rical size of the ground defect on the outer race. Garant 
MM1-200 video microscope is used to analyze and mea-
sure the grinding marks on the rings and Mahr MMQ 200 
contact equipment (Fig. 15) was applied for roundness 
deviation measurement of the outer rings to determine the 
depth of the grinding marks on the rings.

Analysis of the entry point, the exit point and the 
de-stressing point of the roller for the purpose of fault size 
calculation [10]. At point A, the roller strikes the groove 
base with high impact which results in re-stressing and 
high impulse in signal. After this event the roller remains 
in contact with the groove base for some time and during 
this period impulses due to the rough surface of groove are 
observed as Fig. 16 presents.

When the roller comes in contact with the point B it 
again generates high amplitude in the signal and beyond 
this (i.e. after B) progressive decrease in amplitude of sig-
nal is observed due to elastic damping of bearing element.

For fault size estimation fault frequencies are calcu-
lated which are BPFO = 206.18 Hz, BPFI = 287.15 Hz, 
FTF = 12.88 Hz, BSF = 89.96 Hz in this experiment at 
1800 rpm. Regarding the BPFO frequency analysis was 
made at 3rd detail level (cD3) from 1.25 to 2.5 kHz by 
Multiresolution analysis (MRA). Fault parameter can be 
calculated by Eq. (28) [10]

L t D FTF tOD OI= ⋅ ⋅ = ⋅⋅π ∆ ∆1713 74. .  (28)

Finally, the measurement of defect width had been 
measured by the different wavelets. As Table 3 shows, the 
new-designed wavelet provides the most accurate geomet-
rical fault determination. This result is in correlation to 
Figs. 7-9. Figs. 7-9 show the same result graphically.

Table 2 E/S values of the wavelets by the number of measurements

E/S values 1st 2nd 3rd Mean

Sym5 99.65 101.12 100.67 100.48

Sym8 121.85 122.81 123.05 122.57

db04 88.18 87.21 86.84 87.41

db06 117.01 115.94 116.07 116.34

db08 84.28 82.86 84.50 83.88

New_Designed 155.12 154.18 155.23 154.84

Fig. 13 Rank of the E/S values of the wavelets

Fig. 14 Comparison of the scalograms of the Daub_08 (left) and the 
new-designed wavelet (right)
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6 Conclusion
This paper showed the creation of a new wavelet that 
matches the transient vibration response generated by a 

grinding fault on the outer race of a tapered roller bearing. 
The transient of the fault was modelized by a mathematical 
polynomial function to get the signal model. Wavelet cre-
ation is based on Chapa and Rao's method [18], where the 
Meyer wavelet amplitude and phase spectra are matched 
independently to the signal. It was shown that the new 
wavelet can be used for detecting transient pulses generated 
in a bearing. We compared the results with those calculated 
using the new wavelet since many application reported 
its successful application. We found the new wavelet had 
higher efficiency to reveal minor faults on the bearings. 
We compared five typical wavelets to the new-designed 
wavelet. Optical validation reinforced our theory that 
higher Energy-to-Entropy values of the wavelets obtain 
more precise determination of the geometrical defects.

Table 3 Comparision of the calculated and measured fault widths  
of the faults

Wavelet Calculated
width (mm)

Width
deviation (%)

Sym_05 1.2875 3.07

Sym_08 1.2713 1.77

Daub_04 1.2930 3.51

Daub_06 1.2765 2.19

Daub_08 1.2975 3.87

New_designed 1.2639 1.18

Fig. 16 Analysis of the transient impulse presenting the entry and exit 
points of the roller into the grinding defects on the outer ring

Fig. 15 Measurement of the outer ring of the tapered roller bearing with 
grinding defect of 1.2492 mm (left) and its enlarged image (right)
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