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Abstract
Let us consider Portevin-Le Chatelier (PLC) effect as a form

of dynamic material instability. The tools of the investigation
are the same as of the theory of dynamical systems. While at
the PLC phenomenon negative rate dependence is coupled with
the appearance of a self-sustained oscillatory behaviour in solid
bodies, the results present us an interpretation of PLC as a flut-
ter type of loss of material stability.
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1 Introduction
The Portevin-Le Chatelier (PLC) effect is observed in alloys

under certain conditions. It is considered to be a result from
the dynamic interaction of mobile dislocations and solute atoms
[8]. Mobile dislocations move by successive starts and stops be-
tween various obstacles. Solute atoms diffuse to and age mobile
dislocations while they are temporarily arrested at these obsta-
cles. This mechanism is referred as dynamic strain aging (SA)
and leads to negative strain rate sensitivity (NRS). Our aim is to
show that only NRS is sufficient to get the oscillatory behaviour
of PLC as a type of material instability.

Even the first studies of material instability [1] distinguish two
main types of it. These are called the divergence and the flutter.
While divergence is treated as strain localization the nature and
physical explanation of flutter remained an open question. In
this work we show that in a special case NSR conditions are the
same in both flutter and PLC phenomena [2, 3]. In the recent
years there are several studies in this topic, but there are still
several unsolved questions [4, 5]. To perform stability analysis
the solid continuum will be studied as a dynamical sytem. For
dynamical systems the basic definition of stability is formulated
by Liapunov, which can be used for both finite and infinite di-
mensional systems.

The loss of stability can be performed on two basic ways. It
can be a static or a dynamic bifurcation. Unfortunately, in the
case of the rate independent constitutive equation

σ jk,k = K 1
jklmεlm,

where K 1
jklm is the tangent stiffness matrix, the dynamical sys-

tem defined by the set of basic equations of the solid body show
non-generic behaviour. That is, coexistent static and dynamic
bifurcations may occur at the loss of stability. By introduc-
ing strain rate dependent terms into the constitutive equation
the stability investigation can be performed as a generic stabil-
ity investigation [6, 7]. Now we can study the real parts of the
eigenvalues of differential operators defined by the fundamental
equations of the continuum.
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2 Dynamical System in Continuum Mechanics
Assume that state S0of a solid continuum is studied, which

can be identified by fixed values of the stress, strain or velocity
fields σ 0, ε0, v0. The solid body can be described by a set of
equations. By assuming small deformations ε these are:
the kinematic equations

ε̇lm = vlm (1)

where for all subscripts l, m = 1, 2, 3;
the equation of motion

ρv̈ j = σ jk,k, (2)

where repeated indices denote summation; and the constitutive
equation.

Assume that the constitutive has rate dependent terms

σ jk,k = K 1
jklmεlm + K 2

jklmεlm ,̇ (3)

where for coefficients we have

K 1
jklm =

1
2

[
K jklm + K jkml

]
andK 2

jklm =
1
2

[
L jklm + L jkml

]
.

(4)
From Eq. 6 we define two differential operators for velocity
field v

K̂ jkvk := K jklm
∂2

∂xm∂xl
vk and L̂ jkvk := L jklm

∂2

∂xm∂xl
v̇k .

(5)
While (1), (2) and (3) form a set of basic equations of the solid
continuum, they should be satisfied for values

σ 0
k , ε0

k , v0
k (6)

at state S0. Let us add arbitrary small perturbations to (6)

σk = σ 0
k + 1σk, εk = ε0

k + 1εk, vk = v0
k + 1vk . (7)

From (1), (2), (3) and (5) a dynamical system can be formed as
operator equation

ρv̈ j = K̂ jkvk + L̂ jk v̇k (8)

can be derived. When the perturbed functions (7) are substituted
into (8)

ρ
(
v̈0

j + 1v̈ j

)
= K̂ jk

(
v0

k + 1vk

)
+ L̂ jk

(
v̇0

k + 1v̇k

)
is obtained. The system of (1), (2) and (3) is satisfied for func-
tions (6), thus

ρv̈0
j = K̂ jkv

0
k + L̂ jk v̇

0
k

is trivially valid. The remaining equation for the perturbations
reads

ρ1v̈ j = K̂ jk1vk + L̂ jk1v̇k . (9)

The stability investigation can be performed as usual in the the-
ory of differential equations. Thus the eigenvalues λ of charac-
teristic equations of (9)

yk+3 = λyk ,
1
ρ

(
K̂ jk yk + L̂ jk yk+3

)
= λy j+3

(10)

determine the stability-instability conditions. In (10) new vari-
ables [

y1 y2 y3 y4 y5 y6

]
=[

1v1 1v2 1v3 1v4 1v5 1v6

]
are used. There are homogeneous boundary conditions added to
the system of partial differential equations (10), but no general
analytic solution is possible. The two possibilities remained are:
to perform numerical analysis, or to restrict the investigation to
the uniaxial case.

3 The Stability Analysis
Let us consider a uniaxial solid of length l0. Then the eigen-

value equation from its triaxial form (10) reads

y4 = λy1 ,

λy4 =
K1111

ρ
∂2 y1
∂x2

1
+

L1111
ρ

∂2 y4
∂x2

1

(11)

with homogeneous boundaries

y1 (0) = y4 (0) = y1

(
l0

)
= y4

(
l0

)
.

By substituting the first equation of (11) into the second one we
get

λ2 y1 −
K1111

ρ

∂2 y1

∂x2
1

− λ
L1111

ρ

∂2 y1

∂x2
1

= 0 (12)

as the characteristic equation. To obtain eigenfunctions of (12)
at homogeneous boundaries functions

y1 (x1) = Cexp (iαx1) (13)

should be substituted into (12). Then the eigenvalue equation is

λ2
+ λ

L1111

ρ
α2

+
K1111

ρ
α2

= 0. (14)

From the boundary conditions

y1 (0,t) = 0 = A (t) cos (0) + B (t) sin (0) ,

y1
(
l0,t

)
= 0 = A (t) cos

(
αl0)

+ B (t) sin
(
αl0)

are obtained, which implies

αk =
kπ

l0 . (15)

The stability of state S0depends on the real parts of solutions
λ of (14). By substituting (15) into (14) we can easily derive
solutions

λk1,2 =

−bα2
k ±

√
b2α4

k − 4aα2
k

2
, (16)

where notations

a =
K1111

ρ
and b =

L1111

ρ
(17)

are used.
The stability conditions of the theory of dynamical systems

are:
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– the state is stable (in the sense of Lyapunov), if for all eigen-
values

Reλ j < 0,

– the state is unstable, if there is at least one unstable eigenvalue
λufor which

Reλu > 0,

– the state is on the stability boundary, if there are only critical
and stable eigenvalues:

Reλc = 0 and for the othersReλ j < 0, j , c.
The next part shows how the stability boundary can be studied.

4 Material Instability Modes and Dynamical Systems
In this part we concentrate on states of solids, at which stabil-

ity boundary
Reλc = 0

is reached. Two possibilities are present.
The case called the static bifurcation. Then we have a zero

eigenvalue
Reλc = 0, I mλc = 0.

Now the uniqueness of the solution (state S0) is lost. From (16)
and (17) we find that the static bifurcation condition is

K1111 = 0,

which is exactly the same as the classical strain localization con-
dition.

The other possible case on the stability boundary is to have a
nonzero imaginary part, that is, a nonzero eigenvalue:

Reλc = 0, I mλc , 0.

Under such conditions no loss of uniqueness is present. How-
ever, the Lyapunov stability of S0 is lost. This phenomenon is
known as the dynamic bifurcation. From (16) and (17) we find
that the dynamic bifurcation condition is

L1111 = 0.

At dynamic bifurcation in (16) the most important part is the
expression under square root

b2α4
k − 4aα2

k .

By substituting (15) and (17) into it at the first critical eigenvalue
k = 1

L2
1111

(π

l0

)4
− 4K1111

(π

l0

)2
,

that is,

K1111 =
1
4

(π

l0

)2
L2

1111. (18)

The results and graph (18) could be presented in Fig. 1.
We can observe both static and dynamic bifurcation con-

ditions and curve (18), which separates oscillatory and non-
oscillatory behaviours. When the parameters determine a point

in the positive quadrant, there may be a transient oscillatory be-
haviour with decreasing amplitude. It can be persistent by cross-
ing the axis of the dynamic bifurcation. Here a negative rate de-
pendence can be observed. These are exactly the properties of
the Portevin-Le Chatelier effect. We may conclude that in the
uniaxial case studied here PLC effect is caused by a dynamic
bifurcation.

Fig. 1. The stability chart in uniaxial case

5 Summary
In this work the basic equations of solid continua were trans-

formed into a generalized dynamical system. The stability of
state S0 is investigated. We find that two types of loss of stabil-
ity are possible. The one, called the static bifurcation, proved
to be the same as the strain localization. However, the other
instability mode, the dynamic bifurcation, shows essential simi-
larities to the Portevin-Le Chatelier effect. Both exhibit an oscil-
latory behaviour, and in both cases negative strain rate sensitiv-
ity is an essential condition. The main result of this study is that
Portevin-Le Chatelier effect can be identified as a dynamic bifur-
cation at the negative strain rate sensitivity condition. Remark
that the dynamic strain aging scenario of PLC phenomenon has
some “sufficient” nature. Besides the negative strain rate sensi-
tivity SA adds a micromechanical stop-and-go effect.
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