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Abstract
We analyse a simple model of a digitally controlled mechan-

ical system, which may perform chaotic vibrations. As a conse-
quence of the digital effects, i.e., the sampling and the round-off
error, the behaviour of this system can be described by the so-
called micro-chaos map. If dry friction is present in the system,
it can stop the motion. In such cases the resulting behaviour
is referred to as transient chaos, the duration of which can be
closely related to the control time. We developed a method for
the exact calculation of the mean lifetime Nm of transient chaos
in case of the 1D micro-chaos map, and showed that in certain
cases Nm characterizes the duration of chaotic transients better
than the so-called escape rate. In the present paper, we try to
extend these results to a 2D version of the micro-chaos map.
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1 Mechanical Model
Computers are widely applied to control the motions of ma-

chines [1]. Unfortunately, engineers are usually not aware of
the fact that the stability properties of digital and analogue con-
trol systems are different. Digitally controlled systems often be-
have chaotically with very small vibration amplitudes. This phe-
nomenon is often referred to as micro-chaos [2, 3]. The sources
of irregularity are the digital effects: the sampling, the round-off
error and the processing delay. Taking into account these effects,
the motion of the system can be described by a piecewise linear
map, the micro-chaos map. If dry friction is present in the sys-
tem, it can stop the motion in finite time, i.e., in these cases the
resulting behaviour is transient chaotic [4].

In the present contribution, we analyse a simple model of a
digitally controlled mechanical system which may perform tran-
sient chaotic vibrations. The motion of this system can be de-
scribed by a 2D piecewise linear map. Our goal is to determine
the mean lifetime of chaotic transients. For this purpose, we try
to extend our earlier results [5–7], developed for the 1D micro-
chaos map.

The mechanical model of a digitally controlled polishing tool
is shown in Fig. 1. The model consists of a revolving cylinder
(the tool), moving along a block (the workpiece). The shaft of
the cylinder moves ahead with speed v, while its circumferential
velocity is v0. The characteristic µ(vrel) of the friction force
between the revolving polishing tool and the fixed workpiece
is a mixture of the dry and viscous friction characteristics. At
low relative speeds vrel = v0 − v, this friction force is locally
decreasing as vrel increases. Consequently, to stabilize the tool
in a certain position, control force must be applied: the shaft
of the polishing tool is driven by a DC motor, which exerts a
control force Q, governed by a digital control system.

There is another friction force present in the system, denoted
by C in Fig. 1. This dry friction force may lead to the sudden
disappearance of chaotic oscillations.

Note, that in real technological situations the polishing pres-
sure – and consequently, the friction force between the tool and
the workpiece – may vary in time. This effect may provide an
additional irregular excitation to the system. Thus, the evolving
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motion can be chaotic in large scales as well. In engineering
practice, special control systems are applied to hold the polish-
ing pressure at a constant value [8]. This is why we will not take
its variation into account.
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Fig. 1. Mechanical model of the polishing tool

The linearized, first order equation of motion of the system
assumes the following form:

mv̇+mgµ′(v0)v = mgµ(v0)−C sgn(v) −mgµ(v0) − Dv − Px︸                           ︷︷                           ︸
Q: control force

,

(1)
where m is the mass of the tool, while D and P denote the dif-
ferential and proportional gains, respectively. For the sake of
simplicity, we will denote |µ′(v0)| = −µ′(v0) > 0 by f in the
following.

2 Micro-chaos Map
The computer samples the position x and velocity v at dis-

crete time instances, x j ≡ x(t j ) ≡ x( jτ), v j ≡ v(t j ) ≡ v( jτ),
j ∈ {1, 2, . . . }; t j = jτ is the j th sampling instant, τ is the sam-
pling time. Since some time is needed to process the measured
signal, the force is exerted by the motor a bit after the sampling
instant. This processing delay is often equal to the sampling
time – we also consider this case. As a consequence of the de-
lay, the control force exerted at t j depends on the data sampled
at t j−1. Moreover, due to the round-off error, the output signal
must be an integer multiple of a finite resolution h.

If we give up the idea of stabilizing the shaft of the cylinder
at a certain position (P = 0), we obtain the following 2D map,
which is valid between two succesive sampling instants (for de-
tails see [5]):

v j+1 = v j e f gτ
+

1 − e f gτ

f mg

(
h Int

Dv j−1

h
+ C sgn(v j )

)
. (2)

By introducing the new variable y j = Dv j/h, and notations

a = e f gτ > 0 (3)

b = (e f gτ
− 1)

D
f mg

> 0, and (4)

S = (e f gτ
− 1)

C D
f mgh

> 0, (5)

we obtain

y j+1 =

{
0 if |a y j − b Int(y j−1)| ≤ S, and

a y j − b Int(y j−1) − S sgn(y j ) otherwise.
(6)

This map is a 2D version of the micro-chaos map, where the two
variables are y j−1 and y j .

If we neglect the processing delay, we arrive at the following
1D map (see Fig. 2):

y j+1 =


ay j − b Int(y j ) − S if S/a < y j ,

0 if −S/a ≤ y j ≤ S/a, and
ay j − b Int(y j ) + S if y j < −S/a,

(7)
This map is chaotic as it was proved in [3]. Since there is an at-
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Fig. 2. 1D micro-chaos map, a = 3.5, b = 2.75, S = 0.75

tracting domain [−S/a, S/a] in the domain of definition of map
(7), transient chaotic behaviour may occur. This attracting do-
main corresponds to the static dry friction C that stops the shaft
at low velocities. We developed a method for the exact calcula-
tion of the mean lifetime Nm of transient chaos in case of this
piecewise linear map [5]. If the fractal dimension of the chaotic
repeller can be estimated easily, the results can be used for the
quick estimation of the mean lifetime of chaotic transients [6,7].

3 Determination of the Lifetime of Transient Chaos
We try to extend our results to the 2D version of the micro-

chaos map (6), where the processing delay is not negligible, but
equal to the sampling time. It was shown in [9], that the 2D
map is also chaotic at S = 0, i.e., in absence of dry friction. At
certain parameters, the resulting solutions are transient chaotic,
i.e., y j – which corresponds to the velocity – becomes zero after
irregular oscillations.

As computer experiments showed, the repeller of the system
– the set, within which the solutions wander before escaping to
an attracting domain – is equivalent to a multi-valued version of
the 1D map, since both consist of parallel line sections of slope
a – see Figs. 2 and 3. The domain of definition of the 2D map
is divided into parallel bands, according to the integer part of
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Fig. 3. Repeller of the 2D micro-chaos map, a = 1.45, b = 0.5, S = 0.04

y j−1. The successive iteration steps can be followed easily on a
modified cob-web diagram. Starting at a certain initial point, the
next point is found as follows: one projects the point ”horizon-
tally” to the diagonal, then ”vertically” to the line of the repeller.
In the multi-valued domains the appropriate branch is selected
according to the previous value of the coordinate y j−1.

To get a deeper insight into the mechanism of transient
chaotic behaviour, we started our calculations with a simple
case, with only one positive fixed point: a = 1.3, b = 0.6,
and S = 0.156. In this case the repeller can be enclosed in a
square of size a2

− S(1 + a) × a2
− S(1 + a). This square

is shaded in Figs. 4-6. The first few pre-images of the direct
domain of attraction are presented in Fig. 4, the corresponding
numbers showing the number of steps necessary to escape. The
weighted mean of these numbers, where the weights are the ar-
eas of the rectangles, gives the mean lifetime of transient chaos.
For example, in band 0, there is a rectangle of size 1 × S/a,
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Fig. 4. Number of iteration steps, necessary to escape, a = 1.3, b = 0.6,
S = 0.156 (Algorithm of the calculation)

which belongs to the direct domain of attraction, i.e., its escape
number equals 0. The image of this rectangle is a neighbouring
rectangle of size 1 × S/a2 and escape number 1. In this way a
sequence of rectangles can be found. Summing up the heights

of these rectangles one obtains the coordinate of the fixed point:

∞∑
i=1

S
ai =

S
a − 1

. (8)
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Fig. 5. Partition of the domain of definition at a = 1.3, b = 0.6, S = 0.156

As it is shown in Fig. 5, the domain covered by this series of
small rectangles is denoted by R1. The width of R1 is W1 = 1,
while the lower and upper border lines of this rectangle are the
line y j = 0 and the line y j = S/(a − 1) = 0.52 – this latter line
crosses the fixed point.

Here the weighted sum of the escape numbers can be calcu-
lated quite easily:

K1 = W1

∞∑
i=1

(i − 1)
S
ai = 1.733̇. (9)

The domain covered by the repeller was divided into additional
domains R2 . . . R9, where the corresponding weighted sums can
be determined.

R2: The width of this domain is W2 = a2
− S(1 + a) − 1 =

0.3312. There is a large rectangle here with zero escape number
at y j ∈ ((b − S)/a, (b + S)/a). The rectangle with escape
number 1 is the pre-image of another direct domain of attraction
in band 0 (see Fig. 4). Thus, the weighted sum of the escape
numbers can be determined just as in the case of R1:

K2 = W2

∞∑
i=1

(i − 1)
S
ai = 0.57408. (10)

R3: The points in this domain are mapped into R2 in one step.
W3 = W2, y j ∈ (1, a2

− S(1 + a)). Since the point (1, 1) is
mapped into the largest rectangle of R2 with zero escape number
(see Fig. 4), the first rectangle at the bottom of R3 is mangled
with height h1 = (b + S)(a + 1)/a2

− 1 and escape number 1.
Moreover, there is not enough area in this domain for an infinite
sequence of rectangles with decreasing heights. Thus, there is
another mangled rectangle at the top of R3 with escape number
17 and height h2 = a2

− S(1 + a) − ((b + S)(a + 1)/a2
+∑17

i=3 S/ai ). Thus, the weighted sum of the escape numbers
can be obtained as

K3 = W3

(
1h1 + 17h2 +

17∑
i=3

(i − 1)
S
ai

)
≈ 0.51621. (11)
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R4: This domain is bordered by the lines y j = S/(a(1 − a)) +

(S+b)/a and y j = (b−S)/a and is mapped into another domain
in the negative half-plane, which is similar to R1. The upper
border line of R4 is mapped into a rectangle with escape number
3. Thus, there is a mangled rectangle at the top of R4 with height
h3 ≈ 0.001995 and escape number 4. Since W4 = W2, the
weighted sum of the escape numbers is

K4 = W4

(
4h3 +

∞∑
i=6

(i − 1)
S
ai

)
≈ 0.412969. (12)

R5: This domain is found at y j ∈ (1, a−S), and mapped into R3

in one step, and there are mangled rectangles at its top and bot-
tom, with escape numbers 4 and 18, and heights h5 ≈ 0.008078
and h6 = h2/a ≈ 0.00049, respectively. The weighted sum of
the escape numbers, with W5 = 1:

K5 = W5

(
4h5 + 18h6 +

18∑
i=6

(i − 1)
S
ai

)
≈ 1.1096649. (13)

R6: This domain is in y j ∈ (S/(a − 1), 1) and consists of
the images of R5, thus, the weighted sum of the escape numbers
can be obtained as an infinite sum of expressions like in K5,
with increasing escape numbers and geometrically decreasing
rectangle sizes.

K6 = W6

(
∞∑

i=1

(4 + i)
h5

ai +

∞∑
i=1

(18 + i)
h6

ai +

∞∑
j=1

18∑
i=6

(i − 1 + j)
S

ai+ j

)
≈ 5.77888. (14)

R7: This domain is found between R2 and R3. The points
of this domain are mapped into the bottom of R6 in one step.
Thus, the structure of these domains is similar, but R7 consists
of mangled sub-rectangles. After a straightforward but long cal-
culation, we obtain the weighted sum of the escape numbers:

K7 ≈ 0.147603. (15)

R8: This domain is in y j ∈ (0, S/(a(1−a))+(S+b)/a) and is
mapped in two steps in a domain in the negative half-plane that
corresponds to R6. Due to the symmetry, we can calculate as if
it would map into R6, next to the fixed point. The calculation of
K8 is similarly long but easy as in the case of K7.

K8 ≈ 0.935384. (16)

R9: This domain is in y j ∈ (a − S, a2
− S(1 + a)) and is

mapped in two steps onto R7 and into R2 and R3. The calcula-
tion is even longer than so far, but can be performed:

K9 ≈ 1.369039. (17)

The mean escape number can be obtained as

Nm =

∑9
i=1 Ki

(a2 − S(1 − a))2 = 7.0973, (18)

where the denominator is the area of the repeller (the shaded
rectangle in Fig. 4).

We also performed numerical simulations and determined the
number N of steps necessary to escape from 600 points of the
repeller of map (6). The initial values of y j−1 were chosen to
be 0, 1, and 2, while the initial values of y j were uniformly
distributed between 0 and 2. The obtained mean value is N sim

m =

7.0669 ± 0.0369, which is equal to the calculated mean lifetime
(18) within the standard error.
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Fig. 6. Number of iteration steps, necessary to escape, a = 1.3, b = 0.6,
S = 0.156 (Numerical simulation)

4 Conclusions
A two-dimensional version of the micro-chaos map was intro-
duced. Exploiting the similarity between the 1D micro-chaos
map and the attractor of the 2D map, we started to extend the
area of application of our methods for the estimation of the life-
time of transient chaos in case of two-dimensional maps. Our
analitical results were checked by numerical simulation in a par-
ticular example.
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