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Abstract
This paper presents a summary of the new semi-analytical

integration method presented in [10] for von Mises elastoplas-
ticity model with combined linear isotropic-kinematic hardening
within a small deformation range. Solutions for the case of con-
stant strain rate and constant stress rate assumptions are also
presented. Furthemore, it is shown how the general solution
reduces to the particular cases of purely kinematic hardening,
purely isotropic hardening and perfect plasticity, respectively.
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1 Introduction
The most widely used plasticity model is the von Mises

elastoplasticity. In terms of the hardening rule we can cate-
gorize the various cases as: perfect plasticity, kinematic hard-
ening, isotropic hardening and combined hardening. Analyti-
cal solution for perfect plasticity was presented in [14], [11],
[9]. Exact solution for linear kinematic hardening is derived in
[3, 11, 21, 23, 24]. A semi-analytical solution is given in [20] for
purely isotropic hardening. Due the complexity of the governing
constitutive relations corresponding to the combined hardening
case, fully analytical solution is not given in the literature. The
problem was discussed in [5], [16], [17], [24] deriving some ef-
ficient approximate and nearly exact solutions. Efficient numer-
ical integration techniques can be found in [2–4,6,8,12,15,16].
This paper focuses on the new semi-analytical solution of com-
bined hardening materials presented in [10] and includes some
remarks corresponding to the general solution.

The paper is organized as follows. The notation for equations
will be introduced at the end of this section. Section 2 contains
a brief review of the constitutive relations for von Mises elasto-
plasticity with combined linear isotropic-kinematic hardening.
In Section 3 the solution corresponding to constant strain rate
assumption is presented. In Section 4 the formulas will be de-
rived when the loading is defined by constant stress rate.

Regarding notation, tensors are denoted by bold-face char-
acters, the order of which is indicated in the text. The tensor
product is denoted by ⊗, and the following symbolic operations
apply: a : b = ai j bi j , and (C : a)i j = Ci jklakl , with the sum-
mation over repeated indices. The superscripts T and −1 denote
transpose and inverse, respectively, and the prefix tr refers to the
trace. The symbol ‖a‖ =

√
a : a is used to denote a norm of

second order tensor a. Furthermore, standard tensors are de-
noted by δδδ for the second-order unit tensors, and by I for the
symmetric fourth-order unit tensor.
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2 Rate-form constitutive equations of the von Mises
elastoplasticity with combined linear kinematic and
isotropic hardening
The well-known constitutive relations for the von Mises

elastoplasticity model with combined linear isotropic-kinematic
hardening are summarized here (for more details see [13], [18]).
The classical additive decomposition of the total strain-rate is

ε̇̇ε̇ε = ε̇̇ε̇εe
+ ε̇̇ε̇ε p, (1)

where ε̇̇ε̇εe is the elastic and ε̇̇ε̇ε p is the plastic strain rate, re-
spectively. The elastic behaviour is governed by the following
constitutive relation:

·
σσσ = De : ε̇̇ε̇εe, (2)

where the fourth-order elasticity tensor in linear isotropic elas-
ticity takes the form:

De
= 2GT + Kδδδ ⊗ δδδ. (3)

T = I−
1
3
δδδ⊗δδδ is the fouth-order deviatoric operator tensor, and

G and K are the shear and bulk moduli, respectively. The von
Mises yield function for combined isotropic kinematic harden-
ing is defined by

F(ξ,ξ,ξ,R) = ‖ξξξ‖ − R (γ ) ≤ 0, (4)

where R (γ ) represents the isotropic hardening law in terms of
a scalar plastic state variable γ . The so-called reduced stress
deviator is defined as

ξξξ = sss − ααα, (5)

where sss = σσσ−
1
3 trσ δσ δσ δ is the deviatoric stress, ααα is the back stress

describing the translation of the yield surface in the deviatoric
stress space due to the kinematic hardening. For associative flow
rule, the plastic strain rate tensor is found from the following
expression:

ε̇̇ε̇ε p
=

·

λ
∂F
∂σσσ

=
·

λ
ξξξ

‖ξξξ‖
, (6)

where the plastic loading parameter is given by

γ =

∫ t

0

·

λdt. (7)

The linear isotropic and kinematic hardening moduli can be ex-
pressed in the following forms:

hiso = Mh, hkin = (1 − M) h, (8)

where h = 2H/3 and H is the constant plastic hardening mod-
ulus. The mixed hardening parameter M ∈ [0, 1] defines the
relation between the isotropic and kinematic part, respectively.
M = 0 stands for purely kinematic hardening, M = 1 for the
purely isotropic hardening. The linear isotropic hardening func-
tion is written as

R = R0 + γ hiso, (9)

where R0 is a material constant related to the initial value of
yield stress R0 =

√
2/3σy . The evolution law for the back

stress tensor is defined by the Ziegler-Prager’s model as

·
ααα = hkinε̇̇ε̇ε

p
= hkin

·

λ
ξξξ

‖ξξξ‖
. (10)

The loading/unloading conditions can be expressed in Kuhn-
Tucker form as

·

λ ≥ 0, F(ξ,ξ,ξ,R) ≤ 0,
·

λF(ξ,ξ,ξ,R) = 0. (11)

The plastic multiplier
·

λ can be calculated using the plastic con-

sitency condition
·

F = 0 and the Eqs. (1) - (9):

·

λ =
2G ξξξ : ε̇̇ε̇ε

R(2G + h)
. (12)

Finally the elastoplastic constitutive relations can be expressed
as

·
σσσ = Dep : ε̇,ε̇,ε̇, Dep

= De
−

4G2

R2(2G + h)
ξξξ ⊗ ξξξ, (13)

where Dep is the so-called elastoplastic, or continuum tangent
modulus tensor. The constitutive equation of elastoplasticity de-
fined above can be separated into a deviatoric and a hydrostatic
part as follows:

ṡ̇ṡs = 2Gė̇ėe −
4G2

R2 (2G + h)
ξξξ (ξξξ : ė̇ėe) , tr

·
σσσ = 3K trε̇̇ε̇ε, (14)

where ė̇ėe = ε̇̇ε̇ε −
1
3

trε̇ δε̇ δε̇ δ is the deviatoric strain rate. The rate of
the ααα is obtained from (10), (8) and (12) as

·
ααα =

2G (1 − M) h
R2(2G + h)

(ξξξ : ė̇ėe) ξξξ, (15)

and the evolution law for the radius of the yield surface, com-
bining (7), (8), (9) and (12) is given by

·

R =
2G Mh

R(2G + h)
(ξξξ : ė̇ėe) . (16)

From (14) and (15), the expression for ξ̇̇ξ̇ξ can be written as

ξ̇̇ξ̇ξ = 2Gė̇ėe −
2G
R2

(
1 −

Mh
2G + h

)
(ξξξ : ė̇ėe) ξξξ . (17)

3 Time integration of constitutive equations with con-
stant strain rate assumption
Here we restrict our analysis to purely elastoplastic loading,

i.e. when both the initial and the final state lie on the yield sur-
face. The main goal is to determine the solution of Eqs. (14)-
(16) when the loading is given by constant strain rate. It is pos-
sible to define the following inner product between the strain
rate tensor and the relative stress on the deviatoric plane (this
technique was first proposed in [11] for perfect plasticity):

ξξξ : ε̇̇ε̇ε ≡ ξξξ :ė =ė =ė = ‖ξξξ‖ ‖ė̇ėe‖ cosψ = R ‖ė̇ėe‖ cosψ. (18)
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Fig. 1. Geometric interpretation of the angle ψ

Schematic illustration of ψ is shown in Fig. 1. Using this
angle variable ψ after some straightforward algebraic manipu-
lation (detailed discussion is given in [10]) we can obtain the
following expression for the radius of the yield surface in terms
of the angle ψ :

R (ψ) = Rn

(
sinψn

sinψ

)a

, (19)

where ψn is the starting value of ψ (t) computed at the known
n-th state (t = 0). The dimensionless parameter a is

a =
Mc

1 + c
, c =

h
2G

. (20)

Combining Eqs. (14)-(19) finally we arrive at the following for-
mula which implicitly defines the function ψ (t):

4G ‖ė̇ėe‖ t
Rn (sinψn)

a = B
(

cos2 ψ,
1
2
,−

a
2

)
− B

(
cos2 ψn,

1
2
,−

a
2

)
,

(21)
where the incomplete Beta function (see [1], [19]) is defined by

B (x, ν, µ) =

∫ x

0
sν−1 (1 − s)µ−1 ds, 0 ≤ x < 1.

(22)
Efficient technique for computing the inverse incomplete func-
tion can be found in [7]. After ψ (t) is obtained then using
trigonometric identities the ξξξ (t) solution can be expressed as
a linear combination of the relative stress ξξξn at n-th state (t = 0)
and the strain rate tensor ė̇ėe as

ξξξ (t) = Aξξξξn + Bξ ė̇ėe, (23)

with the constant parameters Aξ and Bξ :

Aξ =

(
sinψn

sinψ

)a−1

, Bξ =
Rn sin (ψn − ψ)

‖ė̇ėe‖ sinψn

(
sinψn

sinψ

)a

.

(24)
Using (18), (19), (21) and (23) in (14) the solution for sss (t) can
be obtained in the following form:

sss (t) = Asξξξn + Bs ė̇ėe, (25)

where the constant As and Bs are

As =
1

(a − 1) (c + 1)

(
1 − Aξ

)
, (26)

Bs =
2Gc
(1 + c)

t −
Rn cosψn

‖ė̇ėe‖
As +

Rn sina ψn

2 (1 + c) ‖ė̇ėe‖
× (27)(

B
(

cos2 ψ,
1
2
, 1 −

a
2

)
− B

(
cos2 ψn,

1
2
, 1 −

a
2

))
.

3.1 Proportional loading
The solution derived above is not applicable for proportional

loading where ψn = 0. When the loading is proportional then
the tensor ė̇ėe and ξξξ are coaxial, therefore we can write:

ė̇ėe
‖ė̇ėe‖

=
ξξξ

R
H⇒ ξξξ = R

ė̇ėe
‖ė̇ėe‖

, ξ : ėξ : ėξ : ė = R ‖ė̇ėe‖ .

(28)

Substituting (28)2 and (28)3 in (14)1 we obtain the solution for
the deviatoric stress:

ṡ̇ṡs =
h

1 + c
ė̇ėe H⇒ sss (t) = sssn +

h
1 + c

ė̇ėet. (29)

Combining (28)3 and (16) the solution for the radius of the yield
surface takes the form:

·

R =
Mh

(1 + c)
‖ė̇ėe‖ H⇒ R (t) = Rn +

Mh
(1 + c)

‖ė̇ėe‖ t.

(30)
Finally the solution for the relative stress comes from (28)2:

ξξξ t = ξξξn +
Mh

(1 + c)
ė̇ėet. (31)

3.2 Case of purely isotropic hardening
Now the case where in Eq. (8) M = 1, which corresponds to

flow theory with purely isotropic behaviour of strain hardening
is considered. In this case the centre of the yield surface is still
fixed, therefore there is no back-stressααα, i.e. ξξξ ≡ sss. Theψ angle
is defined through s : ės : ės : ė = R ‖ė̇ėe‖ cosψ . The solution derived for
combined hardening reduces to the following form:

sss (t) = Aiso
s sssn + Biso

s ė̇ėe, (32)

Aiso
s =

(
sinψn

sinψ

)a−1

, (33)

Biso
s =

Rn sin (ψn − ψ)

‖ė̇ėe‖ sinψn

(
sinψn

sinψ

)a

. (34)

This solution with detailed calculations is presented in [20].

3.3 Case of purely kinematic hardening
Next the flow theory with linear kinematic hardening is dis-

cussed, in which particular case the radius of the yield surface
remains unchanged and hardening occurs due only to the change
of back-stress tensor. The mixed hardening parameter in this
case is M = 0. The solution (21) of ψ (t) reduces to

ψ (t) = 2 arctan

e

(
−

2G ‖ė̇ėe‖ t
R0

)
tan

ψn

2

 . (35)
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According to (23) the relative stress ξξξ (t) is calculated by

ξξξ (t) = Akin
ξ ξξξn + Bkin

ξ ė̇ėe, (36)

Akin
ξ =

sinψ
sinψn

, (37)

Bkin
ξ =

Rn sin (ψn − ψ)

‖ė̇ėe‖ sinψn
, (38)

where the parameters Akin
ξ and Bkin

ξ come from (26) and (27)
substituting M = 0. The solution of the deviatoric stress sss (t) is
given by

sss (t) = sssn + Akin
s ξξξn + Bkin

s ė̇ėe, (39)

Akin
s =

1
(c + 1)

(
Akin
ξ − 1

)
, (40)

Bkin
s =

Rn

(c + 1) ‖ė̇ėe‖

(
cosψ − cosψn Akin

ξ

)
+

2Gc
c + 1

t. (41)

3.4 Case of perfect plasticity
Without hardening (h = 0), the solution (26)-(27) reduces to

the well-known form of perfect plasticity (see [11]). ψ (t) can
be computed by (35) with the remark that in this case the angle
is defined between the deviatoric stress and the strain rate tensor.
The analytical solution is represented in the form

sss (t) = Ap
s sssn + B p

s ė̇ėe, (42)

Ap
s =

sinψ
sinψn

, (43)

B p
s =

Rn sin (ψn − ψ)

‖ė̇ėe‖ sinψn
. (44)

4 Time integration of constitutive equations with con-
stant stress rate assumption
In the previous section the case when the loading is given

by constant strain rate was discussed. We have the so-called
inverse problem when the loading path is prescribed in the stress
space. Now consider the case when the stress rate assumed to
be constant. The inverse of (14)1 is written as

ė̇ėe =
1

2G
ṡ̇ṡs +

1
R2h

(ξξξ : ṡ̇ṡs) ξξξ . (45)

Substituting in (17) we have

ξ̇̇ξ̇ξ = ṡ−ṡ−ṡ−
(1 − M)

R2 (ξ : ṡξ : ṡξ : ṡ) ξξξ . (46)

Similarly to (18) here is also possible to define the following
inner product introducing the angle variable ω:

ξξξ :ṡ =ṡ =ṡ = R ‖ṡ̇ṡs‖ cosω. (47)

Substituting (47) in (45) and using the consistency condition fi-
nally we arrive at the following solution for the radius of the
yield surface (details can be found in [10]):

R (ω) = Rn

(
sinωn

sinω

)M

. (48)

After quite long, otherwise straightforward manipulation the
ω (t) function can be implicitly defined by the following non-
linear equation:

2 ‖ṡ̇ṡs‖ t

Rn (sinωn)
M = B

(
cos2 ω,

1
2
,−

M
2

)
−B

(
cos2 ωn,

1
2
,−

M
2

)
.

(49)
Using trigonometric identities the relative stress ξξξ (t) can be
written as a linear combination of ξξξn and the stress rate tensor ṡ̇ṡs

ξξξ (t) = Aξξξξn + Bξ ṡ̇ṡs, (50)

Aξ =

(
sinωn

sinω

)M−1

, (51)

Bξ =
Rn sin (ωn − ω)

‖ṡ̇ṡs‖ sinωn

(
sinωn

sinω

)M

. (52)

Note that the parameters Aξ and Bξ are different from thoose in-
troduced in the previous section. The solution for the deviatoric
strain takes the form:

eee (t) = eeen + Aeξξξn + Beṡ̇ṡs, (53)

Ae =
1

2Gc (M − 1)

(
Aξ − 1

)
, (54)

Be =
(1 + c)

2Gc
t −

Rn cosωn

‖ṡ̇ṡs‖
Ae −

Rn sinM ωn

4Gc ‖ṡ̇ṡs‖
× (55)(

B
(

cos2 ω,
1
2
, 1 −

M
2

)
− B

(
cos2 ωn,

1
2
, 1 −

M
2

))
.

4.1 Proportional loading
In case of proportional loading the stress rate tensor and the

relative stress tensor are coaxial, i.e. we can write:

ṡ̇ṡs
‖ṡ̇ṡs‖

=
ξξξ

R
H⇒ ξξξ = R

ṡ̇ṡs
‖ṡ̇ṡs‖

, ξ : ṡξ : ṡξ : ṡ = R ‖ṡ̇ṡs‖ .

(56)
Substituting (56)2 and (56)3 in (46) gives the solution for ξξξ (t)
as

ξ̇̇ξ̇ξ = Mṡ̇ṡs H⇒ ξξξ (t) = ξξξn + Mṡ̇ṡst. (57)

The solution for R (t) can be obtained by combining (56)2, (56)3

and (16)

Ṙ = M ‖ṡ̇ṡs‖ H⇒ R (t) = Rn + M ‖ṡ̇ṡs‖ t. (58)

After both ξξξ (t) and R (t) are derived the solution of eee (t) can be
found by substituting Eqs. (56)-(58) in (45)

ė̇ėe =
1 + c
2Gc

ṡ̇ṡs H⇒ eee (t) = eeen +
1 + c
2Gc

ṡ̇ṡst. (59)

4.2 Case of isotropic hardening
Solution corresponding to purely isotropic hardening is de-

rived here. In this particular case hardening occurs only through
the variation of the radius of the yield surface. Since sss ≡ ξξξ ,
the angle ω (t) is defined between the deviatoric stress sss and the
deviatoric stress rate ṡ̇ṡs and it can be calculated from

ω (t) = arctan
(

R0 sinωn

‖ṡ̇ṡs‖ t + R0 cosωn

)
, (60)
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which formula comes from (49) by substituting M = 1. The
solutions (53)-(55) reduce to the following expression

eee (t) = eeen + Aiso
e sssn + Biso

e ṡ̇ṡs, (61)

Aiso
e =

1
2Gc

ln
(

sinωn

sinω

)
, (62)

Biso
e =

(1 + c)1t
2Gc

−
Rn cosωn

‖ṡ̇ṡs‖
Aiso

e −
Rn sinωn

2Gc ‖ṡ̇ṡs‖
(ωn − ω) .

(63)

This solution can be found in [20].

4.3 Case of kinematic hardening
In purely kineamtic hardening case the mixed hardening pa-

rameter is M = 0. Equation (49) is simplified and the relation
for ω (t) is given by

ω (t) = 2 arctan

e
−

‖ṡ̇ṡs‖ t
2R0 tan

(ωn

2

) .
The solution for the relative stress ξξξ (t) according to (50)-(52)
becomes

ξξξ (t) = Akin
ξ ξξξn + Bkin

ξ ṡ̇ṡs, (64)

Akin
ξ =

sinω
sinωn

, (65)

Bkin
ξ =

Rn sin (ωn − ω)

‖ṡ̇ṡs‖ sinωn
. (66)

Substituting M = 0 in formulas (53)-(55) gives the analytical
solution for the deviatoric strain as

eee (t) = eeen + Akin
e ξξξn + Bkin

e ṡ̇ṡs, (67)

Akin
e =

1 − Akin
ξ

2Gc
, (68)

Bkin
e =

(1 + c)
2Gc

t −
Rn cosωn

‖ṡ̇ṡs‖
Akin

e −

−
Rn

2Gc ‖ṡ̇ṡs‖
(cosω − cosωn) . (69)

5 Conclusion
A brief summary of the new semi-analytical solution for von

Mises plasticity with combined linear kinematic and isotropic
hardening is given in this paper. The case of constant strain
rate and constant stress rate loading are discussed and the solu-
tions for each cases are derived. Furthermore it has been shown
how reduces all the general solution for the following particular
cases: purely kinematic hardening, purely isotropic hardening,
perfect plasticity.
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