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Abstract
Fractional-order (or, shortly, fractional) derivatives are used

in viscoelasticity since the late 1980’s, and they grow more and
more popular nowadays. However, their efficient numerical
calculation is nontrivial, because, unlike integer-order deriva-
tives, they require evaluation of history integrals in every time
step. Several authors tried to overcome this difficulty. In the
followings, some of the proposed methods will be examined
for a derivative of order 1

2 (that is sometimes called a semi-
derivative).
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1 Introduction
It is common to date fractional calculus back to Leibniz, and

several textbooks are available on the subject (e.g. [1]). Still,
since the definition of fractional derivatives contains a time his-
tory integral, their efficient numerical calculation is not solved
yet. There are authors trying to optimize these integrals. How-
ever, others try to avoid them altogether.

Suarez and Shokooh [4] solved a vibration equation with frac-
tional damping of order 1

2 , taking advantage of the derivative or-
der. Therefore, their solution is restricted to cases where the or-
der of damping is one half. Still, the presented numerical results
are very widely used as reference solutions. Moreover, Suarez
and Shokooh presented a solution for the initial value problem
of the vibration system, which is uncommon in the literature.

Yuan and Agrawal [6] tried a different way. Using the La-
guerre integral formula, they have rewritten the definition of the
fractional derivative to a simplified formula. Their method has
been studied by Trinks and Ruge who claimed extending it to
non-zero initial conditions [5]. However, the formula in [5] has
a singularity at t = 0 for x0 , 0 or v0 , 0. They have given
no example to reveal their interpretation for this. Later, Schmidt
and Gaul [3] pointed out that the method of Yuan and Agrawal
actually turns the system into a linear viscoelastic one, which
does not reproduce the asymptotic behaviour of the fraction-
ally damped system. Moreover, the resulting linear viscoelas-
tic model is less than optimal in reproducing the widely used
complex modulus vs. frequency functions.

The present paper aims to compare the above-mentioned
methods on a simple example. As reference solution, the steady-
state analytical solution and a very basic, direct simulation will
be used. In Section 2, after a brief introduction of fractional
derivatives, the solution methods are presented. Next, in Section
3, the results are discussed. Finally, Section 4 gives a conclusion
of the paper.
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2 Solution methods
2.1 Preliminaries
2.1.1 The equation
The differential equation to be solved is the vibration equation

with fractional damping, with one degree of freedom:

mD2x(t) + cD
1
2 x(t) + kx(t) = f (t) , (1)

where D =
d
dt is the differential operator. In the followings, a

sinusoidal force will be considered:

f (t) = F0 sin(ωet) , (2)

where ωe is the circular frequency of the excitation.
Another common form of Eq. (1) is

D2x(t) + 2ηω
3
2
n D

1
2 x(t) + ω2

n x(t) = f ∗(t) , (3)

with
2ηω

3
2
n =

c
m

, ω2
n =

k
m

and f ∗(t) =
f (t)
m

.

2.1.2 Mathematical aspects
For a rational α, Dα is usually defined [1] using either the

Riemann-Liouville definition

aDα
t x(t) =

(
d
dt

)n 1
0(n − α)

∫ t

a
(t − τ)n−1−α x(τ ) dτ , (4)

or the Caputo definition

C
a Dα

t x(t) =
1

0(n − α)

∫ t

a
(t − τ)n−1−α

[(
d

dτ

)n

x(τ )

]
dτ .

(5)
In both cases,

(n − 1) < α < n,

and 0(x) is the gamma function

0(x) =

∫
∞

0
e−zzx−1 dz. (6)

Actually, the two definitions only differ in the consideration
of conditions at the start of the interval:

aDα
t x(t) =

C
a Dα

t x(t) +

1
0 (n − α)

n−1∑
k=0

(n − 1 − α)!
(k − α)!

(t − a)k−α x (k)(a) . (7)

In the literature, it is the Riemann-Liouville definition that
seems to be used more often. However, this poses problems,
requiring initial conditions for the fractional-order derivatives,
which are unavailable at the moment, due to the fact that a
proper physical interpretation is still sought [2]. Contrarily, the
Caputo definition requires only the initial values of the familiar
integer-order derivatives.

Moreover, in the applications (and, therefore, in Eq. (1)), D
usually means 0Dt , and, as will be seen, initial conditions for
integer-order derivatives are often considered zero. In this case,
the difference between Riemann-Liouville (4) and Caputo (5)
definitions vanishes. (The other such case is when D is −∞Dt ,
i.e. when transients are neglected.)

2.1.3 Reference solutions
Steady-state solution The fractional derivative of the sine

function, with the lower terminal at −∞, is

−∞Dα
t sin(λt) = λα sin

(
λt +

πα

2

)
(8)

for λ > 0 and α > −1. From this, the steady-state solution of
Eq. (1) for the excitation (2) is

x(t) = x0 sin(ωet + φ0) , (9)

where

x0 =
F0

k cos(φ0) + ωα
e c cos

(
φ0 +

π
2 α
)
− mω2

e cos(φ0)
, (10)

and

φ0 = arctan

(
ωα

e c sin
(

π
2 α
)

mω2
e − ωα

e c cos
(

π
2 α
)
− k

)
. (11)

Direct simulation following definition The other reference
is a simulation method derived directly from the definition. To
maintain simplicity, the explicit Euler formula has been used,
with a constant time step h. At t = ih (where n is a positive
integer), the fractional derivative has been approximated as

C
0 Dα

t x(t) =
1

0(1 − α)

∫ t

0
(t − τ)−α ẋ(τ ) dτ ≈

1
0(1 − α)

h−α
i∑

j=1

(
x j − x j−1

) ∫ j

j−1
(i − j)−α d j =

h−α

(1 − α) 0(1 − α)

i∑
j=1

(
x j − x j−1

) (
(i − j + 1)1−α

− (i − j)1−α
)

. (12)

(Thus, ẋ is considered constant within the time step, as the
average of v j and v j−1.)

The rest is simply calculated using

ai =
Fi

m
−

k
m

xi −
c
m

h−α

(1 − α) 0(1 − α)
×

i∑
j=1

(
x j − x j−1

) (
(i − j + 1)1−α

− (i − j)1−α
)

, (13)

vi+1 = vi + ai h (14)

and

xi+1 = xi + vi h +
ai h2

2
. (15)

Here, Fi is the force at t = ih.

2.2 Suarez and Shokooh: solution in the operator space
2.2.1 The method
In [4], the authors re-write Eq. (1) to a system of equations

so that z1(t) = D
3
2 x(t), z2(t) = Dx(t), z3(t) = D

1
2 x(t) and

z4(t) = x(t), and solve it in the Laplace operator space, for
some elementary cases. These solutions are presented in the
next paragraphs.

An interesting point is that these authors use the Riemann-
Liouville definition of a fractional derivative.
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Free vibration with initial conditions The solution for
F(t) = 0 and initial conditions x0 and v0 is

x(t) =

4∑
j=1

94 j R j
1

√
π t

+

4∑
j=1

94 j R jλ j g j (t) , (16)

Here,
g j (t) = eλ2

j t
(

1 + erf
(
λ j

√
t
))

, (17)

where

erf(x) =
2

√
π

∫ x

0
e−t2

dt

is the error function. λ j and 9 j are the solution of the eigen-
problem

A9 j = λ j B9 j (18)

with

A =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −ω2

n

 and B =


0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 2ηω
3
2
n

 ,

and 94 j is the 4th coordinate of the j th eigenvector. R j comes
from the initial conditions, by

R1

R2

R3

R4

 =

[
91 92 93 94

]−1


v0

0
x0

0

 . (19)

Step function response Another elementary case studied by
Suarez and Shokooh is the response to a force described by the
Heaviside function u(t):

f (t) = f0u(t) . (20)

Here, x0 and v0 are considered zero. The solution is then

x(t) = f0

4∑
j=1

92
4 j

λ j

(
g j (t) − 1

)
. (21)

General case For an arbitrary function F(t) and arbitrary
initial conditions, the proposal of Suarez and Shokooh is to con-
sider the initial conditions according to the above. As for the
force, they suggest discretizing the function and handling it as
a series of step loads. However, with this method, the time his-
tory integral of the fractional derivative is replaced by a sum of
displacements from step loads, as Eq. (22) shows.

2.2.2 Implementation
In the present paper, this method has been implemented as

follows. The force Fi is calculated for every time step. Next, its
change

1Fi = Fi − Fi−1

is calculated, also in every time step. At t = 0, 1F0 = F0.
Then,

xi =

i∑
j=1

1Fi− j

m
xu( jh) , (22)

where xu(t) is the solution (21) for the step force with f0 = 1, i
is the time step number and h is the (constant) time step size.

2.3 Yuan and Agrawal: Laguerre integral
2.3.1 The method
The idea of Yuan and Agrawal is to rewrite the Caputo def-

inition (5) to an infinite integral, using the definition (6) of the
gamma function, and use the Laguerre integration formula to
calculate it. This leads to a system of ordinary linear differential
equations:

Dx(t) = v(t) ,

Dv(t) = −
1
m

f (t) −
k
m

x(t) −
cµ
m

n∑
i=1

w
(n)
i ey(n)

i 8i (t) and

(23)

D8i (t) =

(
y(n)

i

)2α−1
v(t) −

(
y(n)

i

)2
8i (t) ,

with the unknown functions x(t), v(t) and 8i (t). The functions
8i (t) are a certain sort of internal variables, with no clear phys-
ical meaning attributed to them.

The great advantage of this approach is that Eq. (23) only con-
tains current values of position, velocity and n internal variables
8i , instead of the time history of the positon or velocity. As Eq.
(23) is a linear differential equation, it can be solved easily by
classical methods. However, this advantage is also a drawback,
as described by Schmidt and Gaul [3] and mentioned in Section
1.

2.3.2 Implementation
The implementation used in the present paper is very simple.

The system of Eqs. (23) is written in the matrix form

ẋ + Bx = f, (24)

where
ẋ =

[
x v 81 . . . 8n

]T

and
f =

[
0 f

m 0 . . . 0
]T

.

Then,
ẋi = fi − Bxi (25)

and
xi+1 = xi + ẋi h (26)

are used for the i th time step (where h is the time step). Al-
though this method is excessively simple, and there are much
better ones available, it will be shown in Section 3 that most of
the error comes from elsewhere.
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Eq. (24) has also a simple steady-state solution, that has been
determined using an excitation from Eq. (2) and the well-known
trial function

x(t) = x0s sin(ωet) + x0c cos(ωet) .

3 Results with the different methods
In the previous section, two methods have been presented for

solving a vibration equation with a fractional damping of order
1
2 . In the next part of the paper, a harmonic vibration will be
examined with some of them.

Numerical parameters in Eqs. (1) and (2) are: m = 1, ωn =

10, η = 0.5, F0 = 1 and ωe = 4π . Simulation time is 10 s,
and time steps are constant in all cases. For the Yuan-Agrawal
method, 5 Laguerre points have been used. All methods have
been implemented in the Maple computer algebra system.

2.2.2 Implementation

The implementation used in the present paper is very simple. The system of equations (??) is written in
the matrix form

ẋ + Bx = f , (17)

where
x =

[
x v Φ1 . . . Φn

]T
and

f =
[
0 f

m 0 . . . 0
]T

.

Then,
ẋi = fi − Bxi (18)

and
xi+1 = xi + ẋih (19)

are used for the ith time step (where h is the time step). Although this method is excessively simple, and
there are much better ones available, it will be shown in Section ?? that most of the error comes from
elsewhere.

Equation (??) has also a simple steady-state solution, that has been determined using an excitation from
Equation (??) and the well-known trial function

x(t) = x0s sin(ωet) + x0c cos(ωet) .

3 Results with the different methods

In the previous section, two methods have been presented for solving a vibration equation with a fractional
damping of order 1

2 . In the next part of the paper, a harmonic vibration will be examined with some of
them.

Numerical parameters in Equations (??) and (??) are: m = 1, ωn = 10, η = 0.5, F0 = 1 and ωe = 4π.
Simulation time is 10 s, and time steps are constant in all cases. For the Yuan-Agrawal method, 5 Laguerre
points have been used. All methods have been implemented in the Maple computer algebra system.
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Figure 1: Result of the direct method (Section ??), 2000 time steps.

Results are shown in Figures ?? through ??. It is immediate to see that the direct method fits well to
the analytical steady-state solution. For the other methods, some problems are seen.
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Fig. 1. Result of the direct method (Section 2.1.3), 2000 time steps.
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Figure 2: Result of the method of Suarez and Shokooh (Section ??), 2000 time steps.
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Figure 3: Result of the method of Yuan and Agrawal (Section ??), 2000 time steps.

Figure ?? shows that the result of the method of Suarez and Shokooh fits well to the analytical solution,
and the transient part is practically the same as for the direct method. However, near the end of the
simulated period of time, a decrease of amplitude is observed. Its reason is unknown; the suspected cause
is a numerical error in the complex error function.

As for the method of Yuan and Agrawal, there is a large error in the steady-state amplitude (Figures
?? and ??). Although it decreases when using a smaller time step, it does not disappear completely. As
mentioned in Section ??, the method substitutes the fractionally damped system by a linearly damped one.
Therefore, the amplitude and phase lag of the steady-state response can be calculated directly (Section ??).

Results for different numbers of Laguerre points are shown in Table ??. It is immediate to see that with
5 Laguerre points, the further decrease of the time step will barely improve the solution. Moreover, even
with 20 Laguerre points, the error of the amplitude is above 4%. (In addition, with an increasing number of
Laguerre points, the matrix B of Equation (??) becomes worse-conditioned, causing a numerical instability,
and requiring a smaller time step (or a better time integration method).)
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Fig. 2. Result of the method of Suarez and Shokooh (Section 2.2), 2000 time
steps.

Results are shown in Figs. 1 through 4. It is immediate to
see that the direct method fits well to the analytical steady-state
solution. For the other methods, some problems are seen.

Fig. 2 shows that the result of the method of Suarez and
Shokooh fits well to the analytical solution, and the transient
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Figure 2: Result of the method of Suarez and Shokooh (Section ??), 2000 time steps.
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Figure 3: Result of the method of Yuan and Agrawal (Section ??), 2000 time steps.

Figure ?? shows that the result of the method of Suarez and Shokooh fits well to the analytical solution,
and the transient part is practically the same as for the direct method. However, near the end of the
simulated period of time, a decrease of amplitude is observed. Its reason is unknown; the suspected cause
is a numerical error in the complex error function.

As for the method of Yuan and Agrawal, there is a large error in the steady-state amplitude (Figures
?? and ??). Although it decreases when using a smaller time step, it does not disappear completely. As
mentioned in Section ??, the method substitutes the fractionally damped system by a linearly damped one.
Therefore, the amplitude and phase lag of the steady-state response can be calculated directly (Section ??).

Results for different numbers of Laguerre points are shown in Table ??. It is immediate to see that with
5 Laguerre points, the further decrease of the time step will barely improve the solution. Moreover, even
with 20 Laguerre points, the error of the amplitude is above 4%. (In addition, with an increasing number of
Laguerre points, the matrix B of Equation (??) becomes worse-conditioned, causing a numerical instability,
and requiring a smaller time step (or a better time integration method).)
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Fig. 3. Result of the method of Yuan and Agrawal (Section 2.3), 2000 time
steps.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  2  4  6  8  10

Time [s]

D
is

pl
ac

em
en

t

Steady-state solution
Simulation (Yuan-Agrawal)

Figure 4: Result of the method of Yuan and Agrawal (Section ??), 10000 time steps.

Number of Laguerre points 5 7 10 15 20 analytical
Amplitude 0.01466 0.01388 0.01328 0.01288 0.01269 0.01218
Phase lag [rad] 1.2575 1.2698 1.2836 1.2923 1.2964 1.3077

Table 1: Harmonic results for the Yuan-Agrawal method.

Method CPU time [sec]
Direct simulation, 2000 steps 59.95
Suarez-Shokooh, 2000 steps 95.38
Yuan-Agrawal, 2000 steps 6.72
Yuan-Agrawal, 10000 steps 39.26

Table 2: Calculation times for the different methods.

It is also worth mentioning computational needs. Table ?? shows the elapsed CPU times for the different
methods (on the same system). Although none of the methods was highly optimized, trivial issues such as
the pre-calculation of products which are always the same have been done (and included in the necessary
CPU time). It is immediate to see that the Yuan-Agrawal method was very fast (and can be made still
faster by e.g. modal reduction of the system). However, curiously, the method of Suarez and Shokooh has
been beaten by our simplist direct simulation method (although for the former, the necessary values of the
error function have been calculated before the main loop).

4 Conclusion

In this paper, some methods for the solution of fractional differential equations of derivative order 1
2 have

been examined. The followings have been seen.

• The method of Yuan and Agrawal, based on Laguerre integrals, is attractive at a first glance, and it
was the fastest of the tested methods. However, it lacks precision in predicting harmonic behaviour,
which means that further results obtained with it should be verified by other means.

• The method of Suarez and Shokooh, which gives a solution of a 1-DOF system with a derivative
order of 1

2 , is usable. However, since it contains the error function, numerical difficulties have been
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Fig. 4. Result of the method of Yuan and Agrawal (Section 2.3), 10000 time
steps.

part is practically the same as for the direct method. However,
near the end of the simulated period of time, a decrease of am-
plitude is observed. Its reason is unknown; the suspected cause
is a numerical error in the complex error function.

As for the method of Yuan and Agrawal, there is a large er-
ror in the steady-state amplitude (Figs. 3 and 4). Although it
decreases when using a smaller time step, it does not disappear
completely. As mentioned in Section 2.3, the method substi-
tutes the fractionally damped system by a linearly damped one.
Therefore, the amplitude and phase lag of the steady-state re-
sponse can be calculated directly (Section 2.3.2).

Results for different numbers of Laguerre points are shown
in Table 1. It is immediate to see that with 5 Laguerre points,
the further decrease of the time step will barely improve the so-
lution. Moreover, even with 20 Laguerre points, the error of
the amplitude is above 4%. (In addition, with an increasing
number of Laguerre points, the matrix B of Eq. (24) becomes
worse-conditioned, causing a numerical instability, and requir-
ing a smaller time step (or a better time integration method).)
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Tab. 1. Harmonic results for the Yuan-Agrawal method.

Number of 5 7 10 15 20 analytical

Laguerre points

Amplitude 0.01466 0.01388 0.01328 0.01288 0.01269 0.01218

Phase lag [rad] 1.2575 1.2698 1.2836 1.2923 1.2964 1.3077

Tab. 2. Calculation times for the different methods.

Method CPU time [sec]

Direct simulation, 2000 steps 59.95

Suarez-Shokooh, 2000 steps 95.38

Yuan-Agrawal, 2000 steps 6.72

Yuan-Agrawal, 10000 steps 39.26

It is also worth mentioning computational needs. Table 2
shows the elapsed CPU times for the different methods (on the
same system). Although none of the methods was highly op-
timized, trivial issues such as the pre-calculation of products
which are always the same have been done (and included in
the necessary CPU time). It is immediate to see that the Yuan-
Agrawal method was very fast (and can be made still faster by
e.g. modal reduction of the system). However, curiously, the
method of Suarez and Shokooh has been beaten by our simplist
direct simulation method (although for the former, the necessary
values of the error function have been calculated before the main
loop).

4 Conclusion
In this paper, some methods for the solution of fractional dif-

ferential equations of derivative order 1
2 have been examined.

The followings have been seen.

• The method of Yuan and Agrawal, based on Laguerre inte-
grals, is attractive at a first glance, and it was the fastest of the
tested methods. However, it lacks precision in predicting har-
monic behaviour, which means that further results obtained
with it should be verified by other means.

• The method of Suarez and Shokooh, which gives a solution of
a 1-DOF system with a derivative order of 1

2 , is usable. How-
ever, since it contains the error function, numerical difficulties
have been experienced. Moreover, it was slower than a very
simple and similarly accurate direct method.

Based on the above, and considering also the fact that 1
2 is not

the only derivative order used in material modeling, a direct sim-
ulation method can be proposed for the solution of a fractionally
damped vibration equation with an arbitrary load function. As
mentioned in the introduction, further literature is available on
the efficient calculation of the time history integral.

References
1 Podlubny I, Fractional differential equations, Mathematics in Science and

Engineering, Academic Press, 1999.

2 , Geometric and physical interpretation of fractional integration and

fractional differentiation, Fractional Calculus and Applied Analysis 5 (2002),
367–386.

3 Schmidt A, Gaul L, On a critique of a numerical scheme for the calculation

of fractionally damped dynamical systems, Mechanics Research Communi-
cations 33 (2006), 99–107.

4 Suarez L E, Shokooh A, An eigenvector expansion method for the solution

of motion containing fractional derivatives, Journal of Applied Mechanics
64 (1997), 629–635.

5 Trinks C, Ruge P, Treatment of dynamic systems with fractional derivatives

without evaluating memory-integrals, Computational Mechanics 29 (2002),
471–476.

6 Yuan L, Agrawal Om P, A numerical scheme for dynamic systems contain-

ing fractional derivatives, Journal of Vibration and Acoustics 124 (2002),
321–324.

Solving a semi-differential vibration equation 812007 51 2


	Introduction
	Solution methods
	Preliminaries
	The equation
	Mathematical aspects
	Reference solutions

	Suarez and Shokooh: solution in the operator space
	The method
	Implementation

	Yuan and Agrawal: Laguerre integral
	The method
	Implementation


	Results with the different methods
	Conclusion



