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Abstract
Nowadays vibrating alert is a common feature of cellular

phones. For this purpose a radial flux linear-motor with air-
gap solenoid was developed, which operates in the vicinity of
its natural frequency. This paper presents the amplification dia-
gram of the mechanical model of this new construction obtained
both numerically and analytically. Furthermore, the results are
compared to measurement data which are showing nonlinear
dynamical behaviour.
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1 Introduction
Electromagnetic actuators rotate shafts, force masses for pe-

riodic translational motion. They can be used for both inter-
rupted and stationary working. The actuator itself is an electro-
mechanical (or mechatronical) system in which the moving me-
chanical part has a feed-back on the operating electronic circuit
[4, 6]. In the simplest case, such an actuator has one mechani-
cal and one electrical degree of freedom [1]: the position of the
moving mass and the electric current in the circuit. However,
the equation of motion of the mass is a second order differential
equation due to Newton’s Second Law while Kirchhoff’s Voltage
Law yields a first order differential equation at the most.
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Fig. 1. Photo of the investigated electro-magnetic actuator

Fig. 1 shows the mechatronical construction in question. Its
size is in the mm-range. The main application field is to create
mechanical excitation in cellular phones [2,5,7]. The actuator in
the picture was made by the authors as the prototype of a radial
flux linear motor with air-gap solenoid.

2 System model of the electro-magnetic actuator
In Fig. 2 an exploded sketch of the actuator can be seen. The

permanent magnet (NdFeB), the bell-shaped flux-closing part
and the ring-shaped air-gap build the magnetic circuit which is,
at the same time, the moving part of the actuator. Fixing it on
a flexible suspension yields a one-degree-of-freedom oscillator
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of which mass m is only 1 gramm. The electric circuit contains
the solenoid coil and the excitation voltage source U (t). The
coil has n turns of length l. The electro-mechanical model is
shown in Fig. 3. The resistor R and the inductor L take into
consideration the resistance and the self-inductance of the coil.
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Fig. 3. Mechatronical system model

This system has three state variables: position x(t) and veloc-
ity ẋ(t) of the mass m, and current I (t) of the electric circuit.
The governing equations according to Newton’s Second Law and
Kirchhoff’s Voltage Law are as follows:

mẍ = −Fs(x) − kẋ + FB(I ), (1)

L İ + UB(ẋ) + RI = U (t), (2)

where Fs(x) is the nonlinear spring force, k is the damping co-
efficient of the mechanical part, and FB(I ) is the Lorentz force
reacting on the magnet from the coil containing current I in a
magnetic field of induction B:

FB(I ) = −I (nlet ) × (Ber ) · ex ≡ I nl B, (er et ex = 1) (3)

because the current in the turns of the coil is perpendicular to
the radial magnetic field in the air-gap (er , et and ex denote the
radial, tangential and axial unit vectors, respectively). The for-
mula UB(ẋ) represents the counter electromotive force which is

induced by the moving permanent magnet:

UB(ẋ) = ẋnl B. (4)

The spring force was assumed to have cubic nonlinearity:
Fs(x) = s(x + µx3), because of the small dimensions of the
suspension spring (its thickness is only 50 µm) and its relatively
“large” deformation (it can be even 0.25 mm). The linear spring
stiffness s and the coefficient µ of the nonlinear term was de-
termined both by finite element analysis using ANSYS and ex-
perimentally. The results are in good agreement, as it is shown
in Fig. 4. The function fitted on the experimental data is as
follows:

Fs(x) = 0.51
[

N
mm

]
(x + 26

[
mm−2

]
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Fig. 4. Nonlinear characteristic of the spring force

Substituting formulas (3), (5) and (4) into Eq. (1) and Eq. (2)
respectively, we obtain the following differential equations:

ẍ + 2Dα ẋ + α2(x + µx3) =
1
m

BlnI, (6)

L İ + Blnẋ + RI = U0 cos ωt, (7)

where α2
= s/m, 2Dα = k/m and U0 cos ωt is the sinusoidal

excitation voltage of a low-frequency generator. The experimen-
tally determined values of system parameters are summarized in
Table 1.

Because of its small value, the inductance can be neglected.
This assumption was confirmed by numerical simulations, i.e. it
is satisfactory considering only the following second order dif-
ferential equation:

ẍ +

(
2Dα +

(Bln)2

m R

)
ẋ +α2(x +µx3) =

Bln
m R

U0 cos ωt. (8)

Fig. 5 shows the obtained amplification diagram A(ω) of sys-
tem (8) and the relative error comparing to the simulation results
AL(ω) where the inductance L was taken into account:

ε(ω) =
|A(ω) − AL(ω)|

AL(ω)
.
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Tab. 1. List of system parameters

System parameter Value

mass: m = 0.001 kg

relative damping: D = 0.065

angular eigenfrequency: α = 714 rad/s = 114 Hz

nonlinear spring coefficient: µ = 26 × 106 1/m2

number of turns: n = 30

length of a turn: l = 0.014 m

magnetic induction?: B = 0.22 T

resistance: R = 10 �

inductance: L = 0.053 mH

amplitude of the excitation voltage: U0 = 2.46 V

(?: obtained numerically using ANSYS)

It can be seen that the error is small relative to the vibration
amplitude, thus it can be neglected, indeed.
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System parameter Valuemass: 0.001 kgrelative damping: 0.065angular eigenfrequeny: 714 rad/s = 114 Hznonlinear spring oe�ient: 1/mnumber of turns: 30length of a turn: 0.014 mmagneti indution : 0.22 Tresistane: 10indutane: 0.053 mHamplitude of the exitation voltage: 2.46 VTable 1: List of system parameters ( : obtained numerially using ANSYS)
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Fig. 5. Simulated amplification diagram (A [mm]) and its relative error (ε)
w.r.t. the original system (0 → 200: for increasing frequencies, 200 → 0: for
decreasing frequencies)

3 Analytical investigations
Eq. (8) is a forced damped Duffing equation with cubic non-

linearity. For the sake of simplicity, we neglect the effect of
damping:

ẍ + α2x(1 + µx2) = α2 f0 cos ωt, (9)

where
f0 =

Bln
α2m R

U0 ≈ 0.045 [mm].

3.1 Autonomous case
If there is no excitation ( f0 = 0), according to Poincaré’s

method of small parameters [3] the solution can be assumed as

x(t) = x0 cos(γ t + δ) + µx1(t) + O(µ2), (10)

where
γ = α + µh1 + O(µ2) (11)

is the modified angular eigenfrequency and h1 is an unknown
parameter, which can be determined as follows.

Let us consider only the solution belonging to the following
initial conditions:

x(0) = x0, ẋ(0) = 0, (x1(0) = 0, ẋ1(0) = 0, · · · ) (12)

which implies δ = 0.
Now, Eq. (9) can be rewritten as

ẍ + (γ − µh1)
2x(1 + µx2) ≈ 0, (13)

and if we put (10) into (13) and separate the coefficients of µ it
yields:

µ0 : (−γ 2
+ γ 2)x0 cos γ t = 0,

µ1 : ẍ1(t) + γ 2x1(t) = 2h1γ x0 cos γ t − γ 2x3
0 cos3 γ t,

µ2 : · · ·

Since
cos3 γ t =

1
4

cos 3γ t +
3
4

cos γ t,

and the resonant solution should be avoided, the coefficient of
cos γ t has to be zero in the equation belonging to µ1, i.e.

2h1γ x0 −
3
4
γ 2x3

0 = 0 ⇒ h1 =
3
8
γ x2

0 . (14)

Thus, the base frequency can be obtained from formulas (11)
and (14):

γ ≈
α

1 −
3
8µx2

0

=
114

1 −
3
8 26 · 0.12

≡ 126 [Hz]. (15)

The solution that satisfies the initial conditions (12) for x1(t)
is

x1(t) =
x3

0
32

(cos 3γ t − cos γ t),

hence,

x(t) = (x0 − µ
x3

0
32

) cos γ t + µ
x3

0
32

cos 3γ t + O(µ2).

3.2 Nonautonomous case
Let us rewrite Eq. (9) into dimensionless form:

x ′′
+ x(1 + µx2) = f0 cos λτ, (16)

where τ = αt is the dimensionless time, ′ denotes d/dτ and
λ = ω/α is the frequency ratio.

The particular solution of the linearized system (µ = 0):

x(τ ) =
f0

1 − λ2 cos λτ. (17)

After some trigonometric considerations (e.g. cos3 λτ causes
terms of cos 3λτ to appear), we assume the stationary solution
of the nonlinear system as follows:

x(t) = x0(µ) cos λτ + µx1(µ) cos 3λτ + O(µ2), (18)

which means that the higher frequency terms have less and less
significance in x(t).
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After putting (18) into Eq. (16) and separating the coefficients
of cos λτ , cos 3λτ , etc. we get:

cos λτ : (−λ2
+ 1)x0 + µ 3

4 x3
0 = f0,

cos 3λτ : (−9λ2
+ 1)x1 + µ 1

4 x3
0 = 0,

cos 5λτ : · · ·

The equation for the coefficients of cos λτ yields the nonlin-
ear amplification diagram in implicit form:

(1 − λ2)x0 +
3
4
µx3

0 − f0 = 0, (19)

from which one can obtain the solution for the linear case (µ =

0) as shown in Eq. (17).
The result of (19) can also be obtained by rewriting Eq. (16)

in the following form:

x ′′
+ λ2x = µ(9x − x3

+ 8 cos λτ), (20)

where

9 =
λ2

− 1
µ

, 8 =
f0

µ

and applying Poincaré’s method (x(τ ) = x0(τ )+µx1(τ )+· · · ,
etc.).

3.3 The nonlinear ampli�ation diagram 3 ANALYTICAL INVESTIGATIONS
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Fig. 6. Dimensionless amplification diagram for the linear case (µ = 0)

3.3 The nonlinear amplification diagram
The graph of the resonance curve of the linear system is not

a continuous function and usually its magnitude is plotted (see
Fig. 6):

|x0| =
f0

|1 − λ2|
≡

1
1 − λ2

{
+ f0, if λ < 1 (left or upper branch)
− f0, if λ > 1 (right or lower branch)

Hence, for nonlinear case (µ > 0) the deformation of these
branches is described by the modified forms of Eq. (19), which
are also shown in Fig. 7:

(1 − λ2)x0 +
3
4
µx3

0 = + f0, (upper branch) (21)

(1 − λ2)x0 +
3
4
µx3

0 = − f0, (lower branch). (22)
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Fig. 7. Nonlinear amplification diagram ( f0 = 0.045 mm)

In the limit case f0 → 0 the two branches huddle up against the
hyperbola of the so called skeleton curve:

λ2
−

x2
0

4
3µ

= 1.

One can show that the greater amplitudes (x0 > x?
0) of the

lower branch belong to unstable solutions and experimentally
cannot be detected. It is also interesting to determine the limit
frequency λ? below which only one solution exists, which is sta-
ble. This can be achieved by derivating Eq. (22) (lower branch)
with respect to x0 and substituting λ′(x?

0) = 0 into it:

1 − (λ?)2
+

9
4
µ(x?

0)2
= 0. (23)

From Eqs. (22) and (23) we obtain:

x?
0 =

3

√
2 f0

3µ
≡

3

√
0.09
78

≈ 0.105 [mm],

λ?
=

√
1 +

3

√
81
16

µ f 2
0 ≈ 1.28.

For our physical system this means:

ω?
= α

√√√√1 +
3

√
81
16

µ

(
BlnU0

s R

)2

≈ 146 [Hz]. (24)

4 Experimental results
As the analytical investigations have previously showed, the

amplitude of the forced vibration depends on the frequency of
the harmonic excitation in the linear and nonlinear case, as well.
The perfectness of our mechatronical system model described
by Eq. (8) was tested by comparing the vibration curves ob-
tained from numerical simulation and experiments, respectively.
It is very important to determine the correct mathematical model
(governing equations) and its dynamical parameters in order to
design the electronics of the built actuator.
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During the experiments, the a displacement amplitude was
measured by a transmission opto-gate (TIL 138). Such opto-
electronical transducers are typically used in measurements
where the displacements are in the submillimeter range. Their
main advantage is that they do not influence the object to be
measured and they have relatively high cut-off frequency. The
results of the experiment and the simulation can be seen in Fig.
8 which shows good agreement. In Fig. 9 the difference from
the undamped analytical results can be seen, which is also not
too large.

5 CONCLUSIONS
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Fig. 8. Amplification diagrams obtained from experiment and simulation

5 Conclusions
We have given the mathematical model of an own-developed

radial flux linear-motor with air-gap solenoid. We have also
proved by numerical simulations that the analytical results based
on Poincaré’s method of small parameters give us acceptable in-
formation on the behaviour of the forced system and the com-
parison of amplification diagrams showed the correctness of the
determined system parameters.
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