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Abstract
This paper investigates a low degree-of-freedom wheel model,

which describes the lateral vibration of towed wheels, called the
shimmy. The model takes into account the lateral deformation
of the tyre and also the torsional elasticity and the damping of
the steering mechanism. The lateral deformation of the wheel
is modeled by the stretched string-like tyre model, which con-
siders the relaxation of the tyre during rolling. The linear sta-
bility analysis of this shimmy model is presented and the stabil-
ity properties are examined in different parameter ranges of the
model.
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1 Introduction
The lateral vibration of towed wheels, called the shimmy, is

a well known phenomenon in vehicle systems. In spite this mo-
tion was already discussed in the early 30’s of the last century,
there is still no perfect solution to eliminate this dangerous vi-
bration. There are several papers in the literature that study
shimmy. Most of the authors consider the elasticity of the sus-
pension system (see [1, 2]) or the elasticity of the wheel [3–5].
Because the majority of vehicles have pneumatic tyres, the sec-
ond case is more relevant in vehicle system dynamics. Shimmy
can occur on motorbikes, airplane nose gears, but the lateral vi-
brations of trucks, caravans, articulated buses are often called by
the name shimmy, too. Of course, the analyses of these three lat-
ter cases require a more complex study of the vehicle system. At
the investigation of motorbikes and airplane nose gears shimmy,
we can obtain fundamental results with a simple towed elastic
tyre model [5]. But it is important to note, that the wheels of
these vehicles are supported by steering mechanisms. For ex-
ample on a motorcycle, the rider tries to hold the wheel in the
required direction. Additionally, some of the motorcycles have
shimmy dampers at the king pin.

This paper investigates a low degree-of-freedom towed wheel
model, in which a torsional spring and damper are also consid-
ered at the king pin. Similar shimmy models without the above
described torsional support were studied in preliminary papers
[5, 7]. The most relevant theoretical results were confirmed by
experiments, too. In this paper, the stability behaviour of the ex-
tended model is investigated, and dimensionless stability charts
are presented in different parameter ranges of the model.

2 Mechanical model
The tyre model is based on the one given in [5, 6]. As shown

in Fig. 1, the elastic wheel is towed by the caster of length l on
the steady horizontal ground with constant velocity v. The abso-
lute coordinate system (X, Y, Z) is fixed to the ground. During
rolling, the tyre adheres to the ground in a contact area. This
area is modelled as a contact line of length 2a. In this way, the
deformation of the tyre in the contact patch can be modelled by
the lateral displacement q (x, t) of this contact line relative to
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Fig. 1. Model of the towed elastic wheel with torsional support

the plane of the wheel. The coordinate x describes the position
of the contact points in the contact line, and t stands for the time.
Outside the contact patch, the deformation of the tyre can be ap-
proximated by decay functions. This technique is well-known
in tyre dynamics (see [3, 6]). The deformation function is given
by:

q(x, t) =


q(−a, t)e(x+a)/σ , if x ∈ (−∞,−a] ,
q(x, t), if x ∈ (−a, a) ,
q(a, t)e−(x−a)/σ , if x ∈ [a,∞) ,

(1)

where σ is the so-called relaxation length that is an important
technical parameter of the tyre.

The caster is supported by a torsional spring and a shimmy
damper at the king pin. The torsional stiffness and the torsional
damping factor are kt and bt, respectively.

3 Equation of motion
Applying Newton’s second law, the equation of motion is

given by an integro-differential equation (IDE):

JAψ̈(t) = −k

∞∫
−∞

(l − x)q(x, t)d x

−b

∞∫
−∞

(l − x)q̇(x, t)d x − ktψ(t)− bt ψ̇(t), (2)

where JA
[
kgm2] is the mass moment of inertia of the overall

system with respect to the z axis at the king pin, k
[
N/m2] and

b
[
Ns/m2] are the lateral (specific) stiffness and damping of the

tyre distributed along the length, respectively.
The elastic tyre is modeled as a continuum supported by con-

tinuously distributed lateral springs. Consequently, the lateral
deformation along the contact line is described by a kinematic
constraint – namely, we are considering rolling –, which can be

given by a partial differential equation (PDE):

q̇(x, t) = v sinψ(t)+ (l − x)ψ̇(t)

+q ′(x, t) · (v cosψ(t)− q(x, t)ψ̇(t)) (3)

with the boundary condition:

q ′(a, t) = −
q(a, t)
σ

, (4)

where x ∈ [−a, a] and t ∈ [t0,∞). Dot refers to time deriva-
tive, prime refers to differentiation with respect to the spatial
coordinate x . The PDE specifies that the points of the tyre con-
tacted to the ground have zero speed relative to the ground. The
boundary condition comes from the stretched-string tyre theory
and gives a simple interpretation of the relaxation length σ .

The analysis of the system can be carried out by different
methods. In [5], the travelling wave-like solution of the linear
PDE was calculated and the IDE-PDE system was transformed
into a delay differential equation (DDE) with continuous time
delay. The time delay describes the memory effect of the con-
tact patch and helps to understand the dynamics of tyres. In
this paper, another method is presented: the direct solution of
the linear IDE-PDE coupled system leads to the linear stability
charts.

4 Characteristic equation
If we consider small vibrations, the system can be linearized

at the stationary rolling characterized by ψ ≡ 0. Using (1), the
integrals in (2) can be separated into three ranges. In this way,

Per. Pol. Mech. Eng.100 Dénes Takács / Gábor Stépán



the linear system is governed by:

ψ̈(t) = −
k
JA

(
−a∫

−∞

(l − x)q(−a, t)e
x+a
σ d x +

a∫
−a
(l − x)q(x, t)d x +

∞∫
a
(l − x)q(a, t)e−

x−a
σ d x

)
−

b
JA

(
−a∫

−∞

(l − x)q̇(−a, t)e
x+a
σ d x +

a∫
−a
(l − x)q̇(x, t)d x +

∞∫
a
(l − x)q̇(a, t)e−

x−a
σ d x

)
−

kt
JA
ψ(t)−

bt
JA
ψ̇(t) ,

(5)

q̇(x, t) = v ψ(t)+ (l − x)ψ̇(t)+ v q ′(x, t), (6)

where the boundary condition q ′(a, t) = −q(a, t)
/
σ , x ∈

[−a, a] and t ∈ [t0,∞) still applies.
If we use the standard exponential trial solution

ψ(t) = P eλt and q(x, t) = Q(x) eλt (7)

in (6), we obtain a non-homogeneous linear ordinary differential
equation (ODE) with respect to Q(x):

Q′(x)−
λ

v
Q(x) = P

λ

v
(x − l)− P (8)

that also includes the unknown scalar parameter P . The solution
of this linear ODE can be calculated as the sum of the homoge-
neous and the particular solutions:

Q(x) = QH(x)+ QP(x), (9)

where the homogenous solution is the standard exponential so-
lution QH(x) = H eµ x with the characteristic exponent µ.
The particular solution can be determined in a polynomial form
QP(x) = a x + b. After the substitution and calculations, the
solution of (7) is given by

Q(x) = H e(λ/v) x
+ P(l − x), (10)

where H and P are determined by the initial and the boundary
conditions.

If we substitute (7) and (10) into (5) and also into the bound-
ary condition (4), we get a linear system of equations with re-
spect to H and P:[

a11 a12(
λ
v +

1
σ

)
e
λ
v a l−a

σ − 1

][
H
P

]
= 0, (11)

where

a11 =

(
k + bλ

JA

) −a∫
−∞

e−
λ
v ae

x+a
σ (l − x)dx +

a∫
−a

e
λ
v x (l − x)dx +

∞∫
a

e
λ
v ae−

x−a
σ (l − x)dx

 (12)

and

a12 = λ2
+

(
kt+btλ

JA

)
+

(
k+bλ

JA

)(
−a∫

−∞

(l + a)e
x+a
σ (l − x)dx +

a∫
−a
(l − x)2dx +

∞∫
a
(l − a)e−

x−a
σ (l − x)dx

)
.

(13)

Because this matrix equation must have non-trivial solutions
for H and P , the determinant of the coefficient matrix has to
be zero. This leads to the transcendental characteristic equation
with respect to λ. It is worth scaling the system into dimen-
sionless form. The introduced parameters are the dimension-
less towing length, the dimensionless towing speed, the dimen-
sionless tyre relaxation, the dimensionless torsional stiffness and
damping, respectively:

L :=
l
a
, V :=

v

2a ωn
, 6 :=

σ

a
,

K :=
kt

2a3k
, B :=

bt

2a3b
, (14)

where

ωn =

√
2k
JA

(
a
(

l2 +
a2

3

)
+ σ

(
l2 + a2 + aσ

))
+

kt

JA
(15)

is the undamped natural angular frequency of the steady wheel.
The damping ratio of the steady wheel is:

ζ =
1

2ωn

(
2b
JA

(
a

(
l2

+
a2

3

)
+ σ

(
l2

+ a2
+ aσ

))
+

bt

JA

)
.

(16)
We define also the new dimensionless characteristic exponent:

λ̃ =
2a
v
λ. (17)

With the six dimensionless parameters, the characteristic equa-
tion is given by

D(λ̃) = 6V 2λ̃3
+ 2V (V +6ζ)λ̃2

+ (6 + 4ζV )λ̃+ 2

−2
(

L−1−6
L2+1/3+6(L2+1+6)+K

+
2ζV (L−1−6)λ̃

L2+1/3+6(L2+1+6)+B

)
×

×

(
L 1−e−λ̃

λ̃
−

1+e−λ̃

λ̃
+ 2 1−e−λ̃

λ̃2

+
∑(

L 1+e−λ̃

2 −
1−e−λ̃

2 −6 1−e−λ̃

2

))
.

(18)

The stationary rolling of the system is exponentially stable if
and only if all the infinitely many characteristic exponents have
negative real parts.

5 Stability analysis
In [7], the stability chart of the undamped system with brush-

type tyre model was calculated analytically. It was proved that
the undamped system has infinitely many unstable domains in
the parameter plane of the towing speed and caster length. It was
also confirmed that the number of unstable regions (‘lenses’)
disappear as the damping is increased and only one stability
boundary persists. The stability analysis of the mechanical
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Fig. 2. Stability boundaries of the linear system
for different values of K
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Fig. 3. Stability boundaries of the linear system
for different values of B
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Fig. 3. B

model with stretched string-like tyre model but without torsional
stiffness and damping can be found in [5], where the effect of
tyre relaxation was also analysed. The relaxation of the tyre ex-
tends the unstable region, which can not be removed by damping
only.

Investigate now the effect of the torsional stiffness and the
torsional damping. The values of the two new dimensionless
parameters, K and B represent the rates of the torsional and
lateral stiffness and damping parameters in the system. The D–
subdivision method combined with numerical algorithms lead to
the stability charts in the parameter plane of the dimensionless

towing speed V and dimensionless caster length L . The stable
domains are shaded in Fig. 2 for different value of K .

It can be observed, that the intersection of the stability bound-
aries, where quasi-periodic vibration was detected in [8], dis-
appears already for small values of the dimensionless torsional
stiffness K . For small towing speeds, the stationary rolling of
the towed wheel becomes stable at zero caster length, if tor-
sional stiffness is applied at the king pin. For nonzero values
of the specific dimensionless torsional stiffness K , the instabil-
ity domains, including the most relevant one, shrink.

In Fig. 3, the stability charts are plotted for a large K while
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the dimensionless torsional damping B is increased. As it is
shown, the most relevant instability domain becomes an isolated
island (or lens) for a critical dimensionless torsional damping,
and the stationary rolling of the towed wheel turns to be stable
for zero caster length for any towing speed.

6 Conclusions
The characteristic equation of an extended shimmy model

was calculated and the stability charts were plotted for different
parameter ranges of the system. As it is shown in Figs. 2 and 3,
the stability behaviour of the towed wheel depends strongly on
the torsional support at the king pin. It was shown that the sta-
tionary rolling at zero caster length is stable for any values of the
towing speed, if both torsional spring and shimmy damper are
applied at the king pin of the system. The straight-line rolling
of the towed wheel can be stable for any values of the caster
length and towing speed if the damping ratio of the system is
large enough. For example, in the bottom right stability chart of
Fig. 3, all the unstable domains disappear for the damping ratio
ζ ≥ 0.016.
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