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Abstract
The paper presents the development of a new plate/shell stiff-

ener element and the subsequent application in determine fre-
quencies, mode shapes and buckling loads of different stiffened
panels. In structural modelling, the plate and the stiffener are
treated as separate finite elements where the displacement com-
patibility transformation takes into account the torsion – flexural
coupling in the stiffener and the eccentricity of internal (contact)
forces between the beam – plate/shell parts. The model becomes
considerably more flexible due to this coupling technique. The
development of the stiffener is based on a general beam theory,
which includes the constraint torsional warping effect and the
second order terms of finite rotations. Numerical tests are pre-
sented to demonstrate the importance of torsion warping con-
straints. As part of the validation of the results, complete shell
finite element analyses were made for stiffened plates.
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1 Introduction
Many engineering structures consist of stiffened thin plate and

shell elements to improve the strength/weight ratio. The buck-
ling and vibration characteristics of stiffened plates and shells
subjected to initial or dead loads are of considerable importance
to mechanical and structural engineers.

Among the known solution techniques, the finite element
method is certainly the most favourable. Using the technique
where stiffeners are modelled by beam finite elements, Jirousek
[1] formulated a 4-node isoparametric beam element including
transverse shear and Saint-Venant torsion effects. More recent
studies on dynamic and buckling problems of stiffened plates
and shells are available in [2]-[5]. It is a common feature of
these finite element based methods that in order to attain dis-
placement continuity, a rigid fictitious link is applied to connect
one node in the plate element to the beam node shearing the
same section. This approach neglects the out-of-plane warp-
ing displacements of the beam section and, in such cases, the
usual formulation overestimates the stiffener torsional rigidity.
To eliminate this problem Patel et al. in [5] introduced a torsion
correction factor. This is analogous to the shear correction factor
commonly introduced in the shear deformation beam theory.

The main objects of the present paper is to propose an efficient
procedure modelling the connection between the plate/shell and
the stiffener, and as part of it the constraint torsion effect in the
stiffener. According to Saint-Venant’s theory of free torsion, the
cross-section does not generally remain plain and the points can
move freely in the direction of the beam axis and the angle of
torsion changes linearly with a constant rate. If this torsional
warping is restricted by external or internal constraints, then the
rate of torsion will also change along the beam axis. The the-
ory of constraint torsion was developed by Vlasov [6]. Apart
from [7], the author could not find any work in the literature in-
volved in the examination of constrained torsion in the stiffener
of complex plate/shell structures. However, the effect is obvious,
especially in terms of dynamic and stability phenomena when
the global characteristics of a structure are investigated, such as
frequencies, mode shapes, or critical loads causing a loss of sta-
bility. Investigations of stand-alone beam structures proved that
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an approximate or more accurate modelling of the torsional stiff-
ness, eccentricity, or mass distribution can considerably modify
the results. Theoretically – and practically as well, if there is ad-
equate capacity available – beam-type components in complex
structures can also be modelled by flat shell, or even spatial fi-
nite elements. Consequently, the size of the model and the num-
ber of degrees of freedom will change considerably, increasing
the time required for calculations and making the interpretation
and evaluation of results more difficult. It is a better solution
if the properties of components are improved and the ranges of
phenomena possible to be modelled are increased at the element
level.

As the objective of this paper is to study the effect of con-
straint torsion and the coupling methods, the shear deformation
of the beam is neglected and the formulation of the stiffener is
based on the well-known Bernoulli – Vlasov theory. For the fi-
nite element analysis, cubic Hermitian polynomials are utilized
as the beam shape functions of lateral and torsional displace-
ments. The stiffener element has two nodes with seven degrees
of freedom per node. In order to maintain displacement com-
patibility between the beam and the stiffened element, a special
transformation is used, which includes the coupling of torsional
and bending rotations and the eccentricity of internal forces be-
tween the stiffener and the plate elements.

2 Beam element
In this work, the basic assumptions are as follows: the beam

member is straight and prismatic, the cross-section is not de-
formed in its own plane but is subjected to torsional warping,
rotations are large but strains are small, the material is homoge-
neous, isotropic and linearly elastic.

Let us have a straight, prismatic beam member with an arbi-
trary cross-section as it is shown in Fig. 1. The local x axis
of the right-handed orthogonal system is parallel to the axis of
the beam and passes through the end nodes N1 and N2. The co-
ordinate axes y and z are parallel to the principal axes, marked
as r and s. The positions of the centroid C and shear centre S in
the plane of each section are given by the relative co-ordinates
yNC , zNC and yC S , zC S . The external loads are applied along
points P located yS P and zS P from the shear centre.
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Fig. 1. Beam element local systems and eccentricities

Based on semitangential rotations, the displacement (specifi-

cally, the incremental displacement) vector consisting of trans-
lational, warping and rotational components is obtained as:

u = U + U∗, (1)

where U and U∗ are the displacements corresponding to the first
and second order terms of displacement parameters:

U =

 Ux

Uy

Uz

 =

 u + ϑφ

v

w

 +

 β(s − zCS) − γ (r − yCS)

−α(s − zCS)

α(r − yCS)

 , (2)

U∗
=

 U∗
x

U∗
y

U∗
z

 =
1
2


αβ(r − yCS)+αγ (s − zCS)

−

(
α2

+ γ 2
)

(r − yCS)+βγ (s − zCS)

βγ (r − yCS) −

(
α2

+ β2
)

(s − zCS)

 . (3)
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Fig. 2. Notation of displacement parameters and stress resultants

Displacement parameters are defined at the shear centre S as
shown in Fig. 2. Accordingly, u, v, and w are the rigid body
translations in the x, y and z directions of point S and α, β and
γ denote rigid body rotations about the shear centre axes paral-
lel to x, y and z, respectively. The small out-of-plane torsional
warping displacement is defined by the ϑ(x) warping parameter
and the φ(r,s) warping function normalized with respect to the
shear centre. The φ satisfies the following conditions:∫

A

φd A = 0,

∫
A

rφd A = 0,

∫
A

sφd A = 0,

∫
A

∂φ

∂r
d A = −AzC S,

∫
A

∂φ

∂s
d A = AyC S . (4)

In these equations the warping function φ and the shear cen-
tre location are the same as in the case of free torsion. For
thin-walled sections φ = - ω, the sector area co-ordinate (see
Vlasov in [6]). When the shear deformation effects are not con-
sidered, the Euler-Bernoulli and the Vlasov internal kinematic
constraints are adopted as:

β = −w′, γ = v′, ϑ = α′, (5)

where the prime denotes differentiation with respect to variable
x. The final form of the virtual work principle for the beam
structure subjected to initial stresses is expressed as

δ5 = δ (5L + 5G + 5Ge − W ) = 0 , (6)

where 5L , 5G , 5Ge are the linear elastic strain energy, the
energy change due to initial stress resultants and the potential
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energy due to eccentric initial nodal loads, respectively, and W
is the work of load increments on incremental displacements.
(For further details, apply to [8] - [11].)

The first two terms of total potential (6) can be rewritten as:

5L =
1
2

L∫
0

[
E Aū′2

+ EIr w′′2
+ E I sv

′′2
+ E Iωα′′2

+ G Jα′2
]

dx, (7)

5G =
1
2

L∫
0

[
N

(
v′2

+ w′2
)

+ MW α′2
+ M1

(
v′′w′

− v′w′′
)
+

M2
(
v′′α − v′α′

)
+ M3

(
w′′α − w′α′

)
+

(
Vr w′

− Vsv
′
)
α−

−2
(
Vr v′

+ Vsw
′
) (

ū′
− v′′yC S − w′′zC S

)]
dx

(8)

At this point a new displacement parameter, the overall average
of Ux linear displacement was introduced as:

ū =
1
A

∫
A

Ux dA =
(
u + yC Sv′

+ zC Sw′
)
. (9)

In Eq. (7) E and G are the Young’s and shear moduli, respec-
tively. The stress resultants in Eq. (8) as shown in Fig. 2 are:
N the axial force, Vr and Vs the shear forces acting at the shear
centre, M1, and M2, M3 are the total twisting moment and bend-
ing moments with respect to shear centre, respectively, and B is
the bimoment. The stress resultant MW is known as the Wagner
effect. With the notation of Fig. 2:

N =

∫
A

σx d A, Vr =

∫
A

τxr d A, Vs =

∫
A

τxsd A,

Mt =

∫
A

(rτxs − sτxr )d A, Mr =

∫
A

sσx d A,

Ms = −

∫
A

rσx d A, B =

∫
A

φσx d A,

M1 = Mt − VsyCS + Vr zCS,

M2 = Mr − zC S N , M3 = Ms + yC S N ,

MW =

∫
A

(
(r − yC S)2

+ (s − zC S)2
)

σx d A

= Ni2
p + Mrβr − Msβs + Bβω. (10)

Also, sectional properties are defined as

Ir =

∫
A

s2dA, Is =

∫
A

r2dA, Iω =

∫
A

φ2dA,

i2
p =

Is + Ir

A
+ y2

CS + z2
CS, J = Ir + Is −

∫
A

(
s
∂φ

∂r
− r

∂φ

∂s

)
d A,

(11)

βr =
1
Ir

∫
A

s(r2
+ s2)d A − 2zCS,

βs =
1
Is

∫
A

r(r2
+ s2)d A − 2yCS,

βω =
1
Iω

∫
A

φ(r2
+ s2)d A.

It should be noticed that energy functional (6) was consistently
obtained corresponding to semitangential internal moments be-
cause the term (8) due to initial bending and torsion moments
was derived based on inclusion of second order terms of semi-
tangential rotations in Eq. (3). The detailed derivation of 5L

and 5G may be referred to – among others – [8], and [10].
The third term of Eq. (6) is the incremental work of initial

loads:
5Ge = −

∫
V

qU∗dV −

∫
Ap

pU∗d A,

where p and q are the initial surface and volume loads. Con-
sidering conservative initial external forces Fx , Fy and Fz acting
at material point P (yS P , zS P ) as signed on Fig. 1 of the i-th
nodal section, furthermore, assuming that the additional exter-
nal moments are of semitangential nature, the incremental work
of these actions is

5Ge = −
1
2

[
FxU∗

x + FyU∗
y + FzU∗

z

]
Pi

=

−
1
2 [Fx (yS Pβ + zS Pγ ) α +Fy

(
zS Pβγ − yS P

(
γ 2

+ α2))
+

Fz
(
yS Pβγ − zS P

(
β2

+ α2))]
i .

(12)
Definitions of semitangential moments and extensive discus-

sion about their incremental behaviours may be referred to Kim
at al. work [8]. In [8] the authors justified that the potential
energy (8) due to initial stress resultants corresponds to semi-
tangential bending and torsional moments.

For time dependent dynamic problems, volume load incre-
ment in the fourth term of Eq. (6) is the inertia force

q = −ρ
(

Ü + Ü∗
)

,

and the appropriate external work increment, for beam struc-
ture vibrating harmonically with the circular frequency ω, can
be written in the following form

δW = −

∫
V

qδ
(
U + U∗

)
dV ≈

∫
V

ρÜδUdV

= −ω2
∫
V

ρUδUdV = −δ5M , (13.a)

where ρ is the mass density per unit volume. Substituting the
linear displacements from Eq. (2) and noting the definition of
section properties in Eq. (11) and the integral identities of Eq.
(4), the following expression is obtained for 5M :

5M = +ω2 1
2

∫
V

ρU2d A

= ω2 1
2

L∫
0

ρ
[

A
(
u2

+ v2
+ w2)

+ Irw
′2

+ Isv
′2

+

Iωα′2
+ Ai2

Pα2
+ 2A (zCTv − yCT w) α

]
dx .

(13.b)
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2.1 Finite element model
The derivation of element matrices is based on the assumed

displacement field. The nodal vector of seven local displace-
ment parameters is defined as

1i = [ū, v, w, α, β, γ, ϑ]T
i , UE =

[
11

12

]
. (14)

A linear interpolation is adopted for the axial displacement and a
cubic Hermitian function for the lateral deflections and the twist:

ū (ξ) = ū11 − ξ) + ū2ξ,

v (ξ) = v1 F1 + γ1L F2 + v2 F3 + γ2L F4,

w (ξ) = w1 F1 − β1 F2 + w2 F3 − β2LF4,

α (ξ) = α1 F1 + ϑ1LF2 + α2N3 + ϑ2LN4,

(15)

where:

F1 = 1 − 3ξ2
+ 2ξ3 ,

F2 = ξ − 2ξ2
+ ξ3,

F3= 3ξ2
− 2ξ3,

F4 = ξ3
− ξ2, ξ =

x
L .

Substituting the shape functions into Eqs. (7), (8), and (13.b)
and integrating along the element length L , elementary matrices
can be defined as:

δ5L = δUT
E kLUE , δ5G = δUT

E kGUE ,δ5M = δUT
E mUE .

(16)
The explicit – exactly integrated – (14 × 14) element kL linear
stiffness and kG geometric stiffness matrices can be found in
[10] and the m consistent mass matrix in [12].

Using the lumping technique proposed by Archer at al. in
[13] the following lumped, but not diagonal mass matrix can be
derived:

m
(14,14)

=

[
mn 0
0 mn

]
,

mn =
ρ AL

2



1 0 0 0 0 0 0
1 0 zCT 0 0 0

1 −yCT 0 0 0
i2P 0 0 0

i2r 0 0
i2s 0

i4ω


(17)

i2
r =

Ir

A
,i2

s =
Is

A
, i2p = i2

r + i2
s + y2

CT + z2
CT, i4ω =

Iω
A

.

The numerical accuracy of this rotationally consistent lumped
mass matrix was analysed in detail in [12].

Fig. 3. Joint line rotation

Fig. 4. Panel dimensions

Fig. 5. Stiffener section

Finally, the load correction stiffness matrix corresponding to
the eccentric point loads can be obtained from Eq. (12) as

kGe
(14,14)

=

[
kGe1 0
0 kGe2

]
,

where

kGei = (18)

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
Fy yS P + Fz zS P −Fx yS P −Fx zS P 0

Fz zS P −(Fy zS P + Fz yS P )/2 0
Fy yS P 0

0


i

.

3 Stiffener transformation
Coupling of the structural components and composition of the

system matrices referring to the entire structure are based on
the fact that the parameters (degrees of freedom) of connecting
nodes are identical. This condition, if it was formulated with
the required accuracy, ensures the displacement continuity along
connecting surfaces (lines, points).

Majority of publications using the finite element analysis of
stiffened panels, where the stiffeners are modelled using beam
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elements, the beam nodes are forced to undergo the displace-
ments and rotations prescribed by the corresponding plate/shell
nodes. In this case the stiffener element follows an edge of the
shell/plate element and the constraint condition is introduced by
considering a rigid fictious link between the beam section and
the plate/shell node N on the common normal. In such a model,
on the basis of U displacement vector in Eq. (2), the displace-
ments and rotations of a nodal point N, with the co-ordinates r =
-yNC and s = -zNC (see Fig. 1) in the plane of the cross-section,
will be as follows:

ux = ū − βyNC + γ zNC ,u y = v + α (zNC + zC S) ,

uz = w − α (yNC + yC S) ,

2x = α,2y = β,2z = γ ,

(19)

where ux , uy , uz , 2x , 2y , 2z are the nodal local displacements
and rotations. From the above, the transformation matrix be-
tween the local and nodal parameters can be specified as:

ū

v

w

α

β

γ

ϑ


=



1 0 0 0 zNC −yNC 0
0 1 0 −(zNC + zC S) 0 0 0
0 0 1 (yNC + yC S) 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





ux

uy

uz

2x

2y

2z

ϑ


. (20)

This transformation takes the eccentricity into account but ob-
viously neglects the effect of torsional warping.

3.1 Continuity of rotations
If a beam is connected to another component not only in its

cross-section but along a narrow stripe on its surface, the trans-
formation (20) is not sufficient to assure the required displace-
ment continuity. During torsion, while the cross-section turns
around point S by an angle α, the originally straight connecting
line crossing points N assumes a spiral shape. The rotation aris-
ing there is proportional with the distance between points S and
N. Using the notations of Fig. 3, the vector of spiral rotation can
be described as

8 = −
dα

dx
RSN = ϑ (RNC + RC S) = ϑ

 0
yNC + yC S

zNC + zC S

 .

(21)
Supplementing rotations in Eq. (19) by this:

2x = α,2y = β + (yNC + yC S)ϑ, 2z = γ + (zNC + zC S)ϑ,

which yields the modified matrix of transformation between the
displacement parameters:

ū

v

w

α

β

γ

ϑ


=



1 0 0 0 zNC −yNC ∗

0 1 0 −(zNC + zC S) 0 0 0
0 0 1 yNC + yC S 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 −(yNC + yC S)

0 0 0 0 0 1 −(zNC + zC S)

0 0 0 0 0 0 1





ux

uy

uz

2x

2y

2z

ϑ


,

(22)

where ∗ = yNC zC S − zNC yC S − φN and φN is the value of
torsional warping function in the node. The only difference
between transformations (20) and (22) can be seen in column
seven. These members link the axial – tensile and bending –
motions with the warping parameter.

Fig. 7. Change of mode shapes and natural frequencies

Accordingly, as regards transformations, a definite difference
should be made between beam-to-beam coupling in beam struc-
tures when Eq. (20) can be applied, and stiffener element cou-
pling, when Eq. (22) is suitable. In this form, the latter can be
used for any other beam finite elements regardless of the number
of element nodes, or the beam theory applied.

3.2 Eccentricity of internal forces
The calculation of kGe load stiffness matrix of the stiffener

element requires some remarks. The stiffener load is not known
directly as the proportion of the total external (initial) load on
the stiffening element depends on relative stiffness conditions.
Nevertheless, initial internal forces or contact forces between the
stiffener and the plating along the contact line can be calculated
from the equilibrium condition of initial state. Hereinafter the
contact point should be the node N and using the notation as
indicated in Fig. 1, the load eccentricities, if N = P are:

yS P = ySN = − (yNC + yC S) , zS P = zSN = − (zNC + zC S) ,

(23)
There is a simple way to calculate the stiffener load stiffness, if
the cubic elements are used to define the initial stress state. It
follows from the shape functions (15) that the N normal and Vr ,
Vs shear forces (see Fig. 3) are constant along a straight beam
element, but different from element to element, and the bending
and torsional moments are linearly varying. This internal force
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Fig. 6. 1st bending (b1), 1st torsion (t1) and 2nd torsion (t2) modes, δ = 0,2.

distribution can be replaced by external forces acting at the two
end nodes of an element:

Fx1 = −N , Fy1 = −Vr , Fz1 = −Vs,

Fx2 = +N , Fy2 = +Vr , Fz2 = +Vs .

(24)

With these end loads and (23) eccentricities in Eq. (18), the
additive stiffness due to off axis contact loads acting along the
joint line is expressed as from which the kGe matrix, likewise
Eq. (18) with P = N, can be derived in a simple way:

kGe1 = −kGe2 = (25)

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
−(Vr ySN + Vs zSN ) N ySN N zSN 0

−Vs zSN (Vr zSN + Vs ySN ) /2 0
−Vr ySN 0

0


Here it is worth to note that the contact forces are part of the in-
ternal force system and the internal moments – as it was proved
in [8] – are of semitangential nature. For this reason the moment
terms are missing in Eq. (25).

4 Numerical analysis and discussions
With the assembled system matrices the equation of motion of

the structure without mechanical load increments can be written
as

Ü + [KL + λ (KG + KGe)] U = 0

This is the general equation and it can be reduced as a special
case to get the governing equation for free vibration and buck-
ling problems as follows:[

KL − ω2M
]

U = 0, [KL + λ (KG + KGe)] U = 0,

where ω is the natural frequency and λ is the critical load pa-
rameter.

The goal of the following numerical study is to compare the
adequacy of two stiffener coupling transformations detailed in
Section 3. First is the usual “rigid lever arm” coupling accord-
ing to Eq. (20), and the other is the proposed stiffener coupling
transformation including the internal force eccentricity in accor-
dance to Eqs. (22) and (25). In the following these will be called
of BM (beam) and ST (stiffener) coupling, respectively.

These transformations, together with the 7 degrees of freedom
per node beam element and a four-noded thick shell element,

were implemented in the VEM7 finite element system. The four-
noded thick shell element was derived by combining a quadri-
lateral Mindlin plate element of Bathe and Dvorkin [14] (known
as MITC4, mixed interpolation of tensorial components) with a
plane-stress element where the contribution of drilling degrees
of freedom was taken into account as it was proposed by Allman
and Cook [15].

4.1 Model definition
A rectangular stiffened panel on Fig. 4 consists of a flat plate

with equally spaced longitudinal thin walled T-stiffeners that
span between girders. Fig. 5 shows a section of the stiffened
plate considered in this investigation. Because of the symme-
try in the structure, only a portion of the plate of width b (b =
600 mm) with a T-stiffener centred on the plate strip, was mod-
elled. In the finite element models the rotation about the longi-
tudinal axis (the X axis in Fig. 4) and the lateral displacement
were suppressed at all the nodes along the longitudinal edges to
simulate the panel continuity (symmetry boundary conditions,
2x rotation and u y displacement are zero) and the X = 0 and
X = L ends of the panel are fixed. The material properties are:
E = 2, 0105MPa, ν = 0,3 and the mass density: ρ = 8,0 10−9N
sec2/mm4.

In order to model the wider range of behaviour of the panel,
the plate dimensions and the beam section shape unchanged (b
= 600 mm, t = 4 mm), the area of stiffener was scaled in pro-
portion to the web thickness. Using the usual thin walled ap-
proximations, the cross sectional properties for the T-beam as
the function of tw are:

t f = tw, b f = 10t f , bw = 2b f ,

A = 30t2
w, Ir = 1402, 5t4

w, Is = 85t4
w,

J = 10t4
w, Iω = 0, βr = 16tw,

zNC = − (13, 5tw + 2) , zC S = −7tw,

(26)

and the non-dimensional plate to beam area ratio parameter is
given by

δ =
As

Ap
=

b f t f + bwtw
bt

=
t2
w

80
. (27)

In order to verify the BM and ST results of present study a COS-
MOS/M shell model was employed. In that model the plate
and the thin walled beam was composed of the same four node
shell4t thick shell element with six degrees of freedom per node.
The mesh of the skin plate was 36x12 for both VEM7 and shell
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Fig. 8.a. Global, tripping and plate buckling
modes.

Fig. 8.b. Tripping buckling mode, shell model, δ

= 0,2; λ=0,2274.

Fig. 9. Change of buckling modes and load pa-
rameter

models, and 6 flat shell elements were used in the beam section
(4 web and 2 flange) in the COSMOS/M model, therefore, the
total problem size of the shell model is larger than that of the
VEM7 (see Fig. 8.b). This mesh size found to be sufficient to
attain converged results up to three digits.

4.2 Dynamic analysis
The mode shapes of the stiffened panel for the first three

modes are shown in Fig. 6 and Fig. 7 presents the variation
of the first three frequencies in terms of δ size parameter. As it
can be seen the frequency of the b1 bending mode is the same in
both BM and ST cases for all δ value. In contrast with bending
modes, there is a significant difference in the values of BM-t1,
ST-t1 and BM-t2, ST-t2 torsional frequencies. The curves on
Fig. 7 show that the difference is zero if δ = 0 (no stiffener)
and tends to zero with increasing stiffener size and rigidity. In
these extreme cases the plate or the stiffener rigidity controls the
structure, thus the coupling method is of less importance. It can
be stated generally, that ST coupling results in a less rigid model

with smaller frequencies. It is observed from the Tables 1.a,b
that in case of δ = 0,2 the rate of decrease is around 17%.

Tab. 1. Frequencies, ω(Hz), stiffener size: δ = 0,2 (tw = 4 mm)

mode BM

Eg. (20)

ST

Eqs. (22,25)

shell

COSMOS/M

t1 39.23 32.24 32.11

t2 60.27 49.42 47.97

b1 58.33 58.33 57.33

Tab. 2. Frequencies, ω(Hz), stiffener size: δ = 0.9 (tw = 8.5 mm)

mode BM

Eg. (20)

ST

Eqs. (22,25)

shell

COSMOS/M

t1 57.45 55.93 53.58

b1 62.47 62.47 62.31

t2 68.96 68.79 65.45

The COSMOS/M results are marked with black dots on Fig. 7
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where an excellent agreement has been found for the frequencies
between the ST and shell results.

4.3 Buckling analysis
To investigate the effect of BM and ST coupling methods on

the buckling loads and modes, the elastic buckling of the panel
subjected to longitudinal compression is studied in this section.
This kind of uniaxial compression can be produced by an Ux0

axial displacement of the X= L end of the panel. Here, Ux0 = 1
mm compression corresponds to

σx0,beam = −Ux0
E
L

= −111, 1M Pa,

σx0,plate = −Ux0
E(

1 − ν2
)

L
= −122, 1M Pa, (28)

normal stress in the beam and plate, respectively.
The buckling mode shapes of the stiffened panel for differ-

ent stiffener sections are shown in Fig. 8a-b. Fig. 9 shows the
change of buckling modes and λ critical load parameter in terms
of δ size parameter. If the stiffener section is small the buck-
ling mode is the overall (sometimes called Euler buckling) flex-
ural mode and the result is independent of the coupling method.
For higher stiffener sections torsional buckling mode, called of
tripping will occur prior to flexural buckling. In contrast with
flexural mode, there is a significant difference in the buckling
loads of BM-t1 and ST-t1 coupling method, and just as in the
dynamic analysis, the ST coupling results in a less rigid model
with smaller critical loads. It is observed from the Table 2 that
in case of δ = 0,2 the rate of decrease is around 30%. As the
stiffener tripping is a coupled lateral torsional-bending motion,
the accurate modelling of torsional properties are of great im-
portance. A detailed analysis of the different buckling modes of
stiffened panels, including the parametric analysis of tripping,
can be found in recent papers of Yuren et al. [16], Sheikh et al.
[17] and Hughes et al. [18].

Tab. 3. Buckling load parameter λ.

δ/tw (mm) BM

Eg. (20)

ST

Eqs. (22,25)

shell

COSMOS/M

0.00 / 0.0 0.0294 0.0294 0.0293

0.20 / 4.0 0.3344 0.2325 0.2274

0.45/ 6.0 0.4125 0.3813 0.3395

0.90 / 8.5 0.4211 0.4207 0.3919

With increasing stiffener size and rigidity the difference be-
tween BM and ST results vanish. The uniform asymptotic crit-
ical load in Fig. 9 indicates the buckling of plate between the
stiffeners, as it is shown in Fig. 8. On Fig. 9 quite satisfactory
agreement can be seen for the critical load parameter between
the ST and shell results marked with black dots.

5 Conclusions
In this study a detailed numerical evaluation has been per-

formed to prove the efficiency of the proposed stiffener –

plate/shell coupling method. It was shown that in all torsion re-
lated cases the proposed ST method leads to a less rigid model.
The results show good agreement with complete shell solutions.
This fact indicates that the application range can be extended.
Though further work can be undertaken to perform dynamic
and buckling analysis of really curved panels with stiffeners, the
newly developed coupling method can be useful for future in-
vestigators.
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