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Abstract

If a disc is rotated in a fluid around its diameter, a reaction torque arises due to the viscosity of the fluid.
In this study, we present the results of an experimental analysis of such a motion. Discs of several
diameter have been rotated in water, while the torque and revolutionary speed has been recorded. The
data sets are interpreted with the help of dimensionless quantities. Based on the experimental data,
analytical formulae are given for the torque-angular velocity relationship and for the critical Reynolds
number at which the laminar-turbulent transition occurs.
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Nomenclature

A [m2] cross-section
D, d [m] diameter (disc, crabs)

E [GPa] elasticity modulus
F [N] force
g [m/s2] gravitational acceleration
h [m] thickness
m [kg] mass
M [Nm] friction torque
n [rpm] revolution number
p [ ] relative deviation
x [. . . ] abscissa of measured point
y [. . . ] ordinate of measured point



58 CS. TIZEDES and CS. HŐS

Eu [ ] Euler number
Fr [ ] Froude number
Re [ ] Reynolds number

rho [kg/m3] density
nu [m2/s] kinematic viscosity
ω [rad/s] angular velocity
σ [G Pa] stress, except par.3
σ [. . . ] standard deviation, only in par.3
ε [-] strain

Subscripts

cable cable
cri t critical

d disc
f fluid

1. Introduction

When analysing the motion of rigid bodies moving in fluids, the Newtonian equa-
tions of motion include the damping torque of the fluid due to the fluid viscosity.
One of the most common application is the calculation of power requirement of mix-
ing apparatus (for general description, see [1]). Similarly, if the motion forms of a
slender body falling freely in viscous fluid (e.g. motion of falling autumn leaves) is
to be computed, this torque plays a decisive role in deciding whether rocking motion
(pendulum-like motion), autorotation (continuous rotation) or chaotic motion ap-
pears (an example of such analysis is given in [4]). A third example is the dynamic
analysis of hydraulic check valves, which is (roughly speaking) an eccentric disc
with weight load mounted into a pipe, which allows flow only in one direction and
is used typically at the pressure side of pumps for preventing back-flow (for details,
see [5]).

This paper is motivated by an industrial application. The task was to compute
the number of collisions of a maverick circular metal cover inside a vertical pipe in
which fluid flows upwards. The number of collisions was needed in order to give an
estimation for calculating fatigue load. The estimation was given by integrating the
equations of motion (for the cover) with appropriate event handling algorithm and
impact law for locating the collisions and for restarting the integration, respectively.
However, it was found that little is known about the dependence of the fluid breaking
torque on the angular velocity, slenderness or other parameters (e.g. the geometry
of the surrounding space) if the body is a disc rotating around its diameter. This
is mainly due to the fact that in the case of mixing apparatus, this body shape is
hardly used, see [1]. However, for regular mixing paddles, an enormous number
of measured values is available - for pairs of mixer elements and tanks. From the
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practical point of view, the Euler number (dimensionless breaking torque or loss
coefficient) is important as a function of the Reynolds number (which is – roughly
speaking – a dimensionless angular velocity). A common feature of all mixing
elements is that for small Re numbers (typically below 10 60) the flow is laminar
and Eu Re 1 while for large Re numbers (typically above 103 104), the flow
is turbulent and the Euler number is constant. The Eu(Re) relationship in the
transition region is usually determined by measurements.

The aims of the experimental work presented in this paper are (i) to give a
closed-form estimation of the Eu(Re) relationship for thin circular discs (possibly
using dimensionless quantities), (ii) to give an estimation for the critical Reynolds
number corresponding to the laminar-turbulent transition and, (iii) to study the effect
of the disc thickness.

2. Experimental setup

The basic principle of the measurement can be summarized as follows. Referring
to Fig. 1 and Fig. 2, the disc (1) is mounted onto a shaft (8) with bearings (7) and
adequate support (2). At the end of the shaft, a crab (3) with thin cable (fishing-
line) (4) is located, through which the disc can be rotated. The whole apparatus
is submerged into water. The cable is then led through a divided disc (5) for the
measurement of the revolutionary speed, which is located high above the water
level. Different weights (6) are hung at the end of the cable. As these weights
sink vertically, the disc – after a short accelerating period – rotates with a constant
angular velocity. If the inner frictions (e.g. in the bearings) can be neglected, the
damping torque of the fluid is simply the torque exerted by the weights. Friction
losses are estimated by the fact that the shaft – in the air without disc – started to
rotate if the weight exceeded 0.05 kg. The diameter of the crab on the disc shaft
was 31 mm and the other one on the divided disc was 45 mm. The width of the
water channel into which the apparatus was submerged was 0.7 m and the depth of
the water was minimum 1 m.

To record the angular velocity, a divided disc (5) with an optical sensor was
used. The width of the devision was 10 degrees and as the disc rotates, the devisions
cut the signal of the photodiode. The signal is then led to a Schmitt trigger, which
converts the analogue signal of the photocell into a digital one. This digital signal
is then recorded by a HBM Spider 8 data acquisition equipment. The rough data
sets are then processed with Matlab to give the angular velocity ω and final results
are obtained with Excel. Every measurement (i.e. fixed disc diameter and weight)
was performed at least three times. Typical M f (ω) graphs are plotted in Fig. 3.
Note that the scale on both axis is logarithmic to highlight the fact that for small
angular velocities, the slope is approx. 1 and hence the flow is laminar, while for
larger values of ω, the slope increases.

Let us turn now to the accuracy of the measurements. We only give here
the error bounds without going into details. Should the reader have a deeper



60 CS. TIZEDES and CS. HŐS

Fig. 1. The shafted disc with the support (for details, see the text).

Fig. 2. The experimental setup.

interest of the estimation, the authors are happy to provide further information.
Density and viscosity are considered to be temperature-dependent. At constant
temperature, the error in density and viscosity of the water due to the accuracy
of the temperature measurement ( 0.1oC) was ρ (998.22 0.02) kg/m3 and
ν (1.004 0.0025) mm2/s. The relative error of the diameter due to manufactur-
ing was below 0.02% for each disc. The relative angular error of the devisions on
the divided disc was below 1.7%. By using elementary geometry, it can be shown
that assuming 1 mm assembling eccentricity of the divided disc, the relative angular
error is below 1.5% (compared to the theoretical value of 10 degrees). No slip was
observed between the divided disc and the cable.
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Fig. 3. Braking torque of the fluid as a function of the angular velocity, experimental results
for D=120mm (diamond), D=224mm (asterisk), D=251mm (cross), D=270mm
(circle) and D=285mm (plus sign).

It should be also studied whether the elastic expansion of the cable causes a
considerable error. The material of the cable is assumed to be linearly elastic, i.e.
the Hooke law holds and we have σ εE , where σ denotes the stress and ε stands
for relative lengthening, ε 1L/L . E is the elasticity modulus of the cable, which
was found to be E 59.6 GPa. If the diameter of the crab on the disc underneath
the water is denoted by d3 and that one of the divided disc is d5 (see Fig. 1), then for
the ideal (non-elastic) case, we have d3 ω3 d5 ω5. However, if the cable stretches
between the two discs, we have

ω5

(

1
m g

Acable E

)

d3

d5
ω3

(

1
m kg

298 kg

)

d3

d5
ω3, (1)

where m is the mass of the weight, g is the gravitational acceleration and Acable

is the cross-sectional area of the cable. The second part of the above equation
(1) gives the real, measured angular velocity. Taking into account that the largest
weight applied during the measurements was 4 kg, we see that the relative error is
below 1.3%.

However, by calculating the empirical standard deviation of the angular de-
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viation, we experienced a relative deviation up to 8% in terms of angular velocity.
We speculate that this large error is due to the recording of the velocity and the
computer data processing. Finally, the empirical relative standard deviation of the
torque was below 0.16%.

3. Dimensionless Parameters

In this section, we introduce dimensionless quantities, which allow us to reduce the
number of parameters describing the phenomena under investigation.

We have eight parameters describing the experiments, i.e. disc diameter D m,
disc thickness h [m], disc and fluid density ρd [kg/m3] and ρ f [kg/m3], kinematic
viscosity of the fluid ν [m2/s], gravitational acceleration g [m/s2], disc revolutionary
speed n [rpm] and braking torque M f [Nm]. Applying dimension analysis (for
details, see [3]), the following 5 dimensionless groups are derived:

51
h

D
slenderness or relative disc thickness, (2)

52
ρd

ρ f

relative density, (3)

53
D2 n

ν f

de f.
Re Reynolds number, (4)

54
D n2

g

def.
Fr Froude number and (5)

55
M f

D5 ρ f n2

def.
Eu Euler number. (6)

Our primary aim was to describe the M f (ω) relationship, whose dimensionless
equivalent is the Eu(Re) relationship. The slenderness parameter 51 is a free
parameter, thus we have Eu(Re, h

D
). The density ratio is ignored in what follows

as the authors did not study other fluid-disc pairs than water and aluminium. The
only parameter left is the Froude number, which, in the case of mixing elements,
describes the importance of whirl formation. However, in our case – due to the
geometrical configuration – no whirl formation is expected as the gravitational and
the centrifugal forces are parallel. The Froude number in our case was used to
qualify the measurements as follows. By virtue of the above equations, we have

Fr
ν2

f

g

1

h3

(

h

D

)3

Re2 def.
A 5α

1 Reβ . (7)

Note that the parameter A was constant during our measurements (for constant
temperature). It is clearly seen from (7) that α 3 and β 2 and A can be also
directly computed. However, by using ’blindly’ least-square technique to compute
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α, β and A from the measured data and then comparing them to the theoretical
values gives us valuable information about the accuracy of our measurements. Ta-
ble 1 compares the actual values obtained from the experimental results and the
theoretical values. We experience a reasonable agreement between the measured
and theoretical values of α and β and a significant disagreement in the case of A. It
can be shown that the error of the disc thickness dominates (the corresponding stan-
dard prescribes 0.12 mm, which is 6% relative error (compared to disc thickness
h=2 mm). We emphasize again that (7) does not have a theoretical significance but
provides information about the accuracy of the measurement.

Table 1. Comparison of the experimental and theoretical values of A, α and β in (7).

A 106 α β

Measurements 13.7 2.6 2.93 1.998
Theory 10.08 3 2

It would be advantageous if while varying the Reynolds number (the angular
velocity), only the Euler number (the braking torque) would change. Of course, the
Froude number also changes when the angular velocity varies. However, one can
define two new dimensionless parameters as

534
Re2

Fr

D3g

ν2
f

and 545 Fr5 Eu
n8M f

g5ρ f

. (8)

Note that 534 is independent of n and 545 does not include D. (534 is often
called Galilei number, see [1].) For the measurements, five discs were used with
a diameter series that gives a linear distribution for 534 between the minimal and
maximal diameter values. The diameter series is D 120, 224, 251, 270 and
285 mm.

The uncertainty of the Re and Eu number can be computed in the standard
way as follows. Suppose that the physical quantity y is an algebraic function of
several measured variables xi , with exponents ai , i.e. y K

∏

i x
ai

i , with some
constant K . The standard deviation of every xi is denoted by σxi

. The relative
deviation of y is then

(

σy

y

)2
∑

i

(

ai

σxi

xi

)2

. (9)

After performing the actual calculations, one obtains pRe σRe/Re 8.2% and
pEu σEu/Eu 16.4%. Note that the main error source is the data acquisition
technique used for measuring the angular velocity.
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4. Results

The assumed form of the Eu(Re) relationship is

Eu f (Re) Euturb

√

1
Re2

crit

Re2
, (10)

where the unknown parameters Euturb and Recrit are yet to be defined. It should
be emphasized here that the above formula is independent of the physics, however,
its advantages are (a) for small Reynolds numbers (10) it is a linear function with

1 slope, (b) for large Re numbers, it provides a constant Eu number and (c)
the parameters Euturb and Recrit have physical meaning as for small and large Re
numbers, we have

for Re 0 log Eu log Euturb log Recrit log Re and (11)
for Re log Eu log Euturb. (12)

The coordinates of the intersection of the above two linear functions is (Recrit, Euturb).
The unknown parameters Recrit and Euturb can be determined by minimizing the
RMS value of the errors as follows.

Rei

Eui

Rei

Eui

1Rei

1Eui

Eu(Re)

ε i

Fig. 4. Curve fitting to data points, see equation (13).

First of all note that both the Rei co-ordinates and the Eui co-ordinates are
known with approximately the same relative error bound. Thus, least square tech-
nique cannot be employed. Wald’s method ( see [2] or [6]) could overcome this
difficulty but the distribution of our measurement points is not suitable for this
technique, as most data points lie in the middle of the measured interval (also this
technique is developed for linear functions). The parameters in (10) were deter-
mined in the following way.
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Let pRe and pEu denote the relative deviation of the Reynolds and Euler
numbers respectively. Note that these are constants over the data set. The error
bounds around the data points Rei and Eui are 1Rei

2 1.96 pRe Rei and
similarly 1Eui

2 1.96 pEu Eui , if we assume Student’s distribution at 95%
confidence interval. Here, pRe 0.082 and pEu 0.164 denotes the relative
deviation of the Re and Eu data, calculated in the previous section. Let εi denote
the distance of the data point from the fitted curve Eu f (Re). Fig. 4 gives the
geometric interpretation; the interval corresponding to 95% confidence is depicted
by the dashed ellipse. The way presented here for calculating the parameters is
heuristic, it is an arbitrary but straightforward generalization of the least square
technique, without inheriting the statistical properties of the least square technique,
see [2]. The parameters in (10) are chosen in such a way that the sum of the squared
distances εi weighted with the inverse of the error bound area π

4 1Rei
1Eui

should
be minimized:

N
∑

i 1

(

εi

π
4 1Rei 1Eui

)2 1
(

π 1.962 pRe pEu

)2

N
∑

i 1

(

Rei Rei

)2 (

Eui Eui

)2

Re2
i Eu2

i

min,

(13)
where Rei and Eui are the tangent points on the curve to be fitted. They can be
computed by (iteratively) solving the equation

Rei Rei f
(

Rei

) [

Eui f
(

Rei

)]

. (14)

The result of the curve fitting is given in Table 2 for several slenderness values.

Table 2. Results for Recrit and Euturb for several h/D slenderness values, see (10). The
disc thickness was h=2 mm for all measurements.

D[mm] 120 224 250 270 285

103 h/D 16.7 8.93 7.97 7.41 7.02
Euturb 2.334 2.265 2.186 2.056 2.041
Recrit 15860 12900 14830 14660 13990

5. Discussion

The main result of the work presented in this paper is that based on experiments, a
closed-from analytical relationship was given for computing the breaking torque on
a disc rotating in a viscous fluid around its diameter. The relationship is expressed
in terms of dimensionless variables, thus – if the geometrical configuration is not
changed – it holds for a wide range of disc diameters and angular velocities, both
for laminar and turbulent flow conditions. The relationship also provides a smooth
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Fig. 5. Measured values and fitted curve for D=285mm.

approximation across the laminar-turbulent transition zone, which is important for
analytical calculations.

However, it was clearly shown that the weak point of this measuring technique
is the inaccurate measuring of the angular velocity, which introduces a relative error
of up to 8%. Thus, one of our future plans is to improve the velocity measurement,
e.g. by employing Fourier analysis of the voltage signal of the diode or mounting a
water-proof angular velocity measuring instrument. From a more general point of
view, it would be interesting to study the effect of wall roughness and also conduct
a systematic study in different fluids (notably in air).

References
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