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Abstract

Some peculiarities of the exploitation of the entropy inequality in the case of weakly non-local
continuum theories are investigated and refined. As an example, the simplest internal variable theories
are investigated. It is shown that the proper application of Liu’s procedure leads to the Ginzburg-
Landau equation in the case of a weakly non-local extension of the constitutive space.
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1. Introduction

In the last decades there has been a continuous interest in developing generalized
classical continuum theories that are able to describe non-local effects. In this paper
we investigate some general aspects of weakly non-local (gradient) theories where
the material functions depend on the different derivatives of the basic state variables.

One can generalize classical theories introducing higher order space deriva-
tives into the material functions. Weakly non-local continuum theories appear in
different parts of physics. For example, the weakly non-local generalization of
classical ideal Euler fluids, considering pressure that depends on the gradient of the
density, has been known for more than a century. These are the so called Korteweg
fluids [1]. Another example can be the weakly non-local heat conduction. Here the
Guyer-Krumhansl equation of weakly non-local (and wave) heat conduction [2] is
the most important example, but there are several other theories, e.g. the Cimmelli-
Kosiński model [3]. One can find numerous other examples of weakly non-local
theories under different names, like gradient theories, theories with coarse grained
thermodynamic potentials, phase-field models, etc...

The general Korteweg fluids are not good models of any particular physical
phenomena, only some restricted forms can be important. The mentioned weakly
non-local heat conduction models also introduce specific constitutive functions.
The Second Law restricts the form of any constitutive equation. There are different
methods and principles to understand how and under what conditions the Second
Law restricts the form of gradient dependent constitutive functions.
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For weakly non-local equations the traditional methods of irreversible ther-
modynamics seemingly do not work. One cannot recognize thermodynamic forces
and currents. Introducing dynamic variables, which were a great help modelling
inertial (memory) effects [4, 5, 5, 6, 7, 8] does not help at all. In the case of weakly
non-local thermodynamic theories, one should apply additional principles or/and
special considerations; like the virtual power of Germain and Maugin [9], a mi-
crostructure theory based on the concept of microforce balance of Gurtin [10], the
theory of substructural interactions initiated by Goodman and Cowin [11], etc...

The investigations toward the weakly non-local extension of extended ther-
modynamics by Lebon, Jou and co-workers [12, 13, 14, 15] show well the renewed
attempts to build up a satisfactory theory that uses uniform methods to describe
non-local and memory effects.

In this paper, all the basic ingredients and the mathematical background, to
exploit the Second Law inequality in weakly non-local continuum theories, are col-
lected and investigated. In the next section a short review of the methods to exploit
the Second Law inequality is given. We collect some arguments why Liu’s pro-
cedure unified with a traditional Onsagerian approach is favorable, and emphasize
the most important differences between local and weakly non-local theories. In the
following section the suggested method is applied in the simplest possible case, to
get the gradient extension of the traditional relaxation equation of a single dynamic
variable. We will arrive at the Ginzburg-Landau equation. A new, generalized
formulation of Liu’s theorem, suitable for our purposes, and its direct proof from
Farkas’ lemma are given in an Appendix.

2. Methods to Exploit the Second Law Inequality – Procedures of CIT,
Coleman-Noll and Liu

In every non-equilibrium thermodynamic theory, an important theoretical problem
is to formulate the correct form of the evolution equations taking into account the
requirement of the entropy inequality. The most predictive methodological solu-
tion of the problem is due Coleman and Mizel. According to them one should
look for the solution of the entropy inequality taking into account the evolution
equations as constraints [16, 17]. In continuum physics the dynamic equations
are partially determined (e.g. as balances of extensives), except some constitutive,
material functions. The task is to ensure the non-negativity of the entropy pro-
duction with appropriate constitutive assumptions. Therefore, one should specify
the undetermined material functions in such a way that in the case of all possible
solutions of the dynamic equations the form of the constitutive functions ensures
the non-negativity of the entropy production. In this case, the Second Law ex-
presses a material property, the inequality is fulfilled independently of the initial
and boundary conditions. The entropy and the entropy current are both constitutive
and are to be determined according to the above requirement (as it was suggested
originally by Müller and applied in extended rational thermodynamics [7]). The
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entropy should possibly preserve its potential character in a general sense, therefore
solving the above problem the practical aim is a simplification in such a way that
the constitutive quantities could be calculated from the entropy function.

There are three basic methods to exploit the entropy inequality.

– Heuristic. This is the force-current method of classical irreversible thermo-
dynamics (CIT). In classical problems, in the case of simple state spaces,
the form of the entropy production is quadratic and the inequality can be
solved. The method can be justified by Liu’s procedure in the case of the
traditional, simplest state spaces [18], and the method can be generalized to
include non-classical entropy currents [19, 20].

– Coleman-Noll procedure. In the Coleman-Noll procedure one exploits the
constraints (e.g. dynamic equations) directly, substituting them into the en-
tropy inequality. The degenerate form of Liu’s theorem (Theorem 5.5) is
applied. One usually assumes a specific form of the entropy current. There
are essentially two choices here. The entropy current can be the classical
(js = jq/T ), or a generalized one. In weakly non-local considerations both
classical (see e.g. [10, 21]) and generalized forms are applied (see e.g [22]).
Generalizations of the entropy currents (or currents of other thermodynamic
potentials) can be suggested on different grounds and they give good results
with the procedure [23, 24].

– Liu’s procedure. With Liu’s procedure one applies Liu’s theorem with Lagrange-
Farkas multipliers (Theorem 5.3 in the Appendix). At first glance the appli-
cation of this method seems to have only practical advantages. However, as
the Lagrange multiplier method preserves the simple form of the constraints
in question in constrained extremum problems, Lagrange-Farkas multipliers
preserve and exploit the structure of the constraints and the entropy inequal-
ity. The question is not purely mathematical, because there are cases where
the multipliers cannot be eliminated and they can get physical significance.
Moreover, an inevitable advantage of Liu’s method is that the structure of en-
tropy inequality makes it possible to solve the physical problem completely.

The first two exploitation methods are frequently applied in the case of weakly
non-local continuum theories beside the mentioned examples. Here we suggest that
we apply Liu’s procedure adapted to the specialities of the generalized weakly non-
local constitutive functions.

We emphasize the following important peculiarities. The entropy current is
considered as an independent constitutive quantity. With a proper choice of the
constitutive space and considering the entropy as a primary constitutive quantity,
we can solve the Liu equations, determine the entropy current and simplify the
entropy inequality. The point of view of Onsagerian CIT is important because with
a proper identification of thermodynamic currents and forces the resulted entropy
inequality can be solved, determining all constitutive quantities.

In the following we will apply the following terminology. The functions in
the differential equations form the basic state space. The basic state variables and
some of their derivatives can be included in the constitutive state space (or simply
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state space [25]), in the domain of the constitutive functions. The entropy inequality
with its special balance form determines the independent variables of the algebraic
problem: those are the derivatives of the constitutive state, called process directions.
The choice of the constitutive state space is crucial and determines the restricted
constitutive functions after applying Liu’s procedure.

In weakly non-local continuum physical calculations with Liu’s procedure,
one should consider some additional practical rules. Depending on the particu-
lar state space, some space derivatives of the original constraints (e.g. dynamic
equations) further restrict the process direction space, therefore, they should be
considered in Liu’s theorem as additional constraints. One can find other examples
on the application of derivative constraints in [3, 26, 27].

REMARK 2.1 The mentioned exploitation methods of the Second Law are al-
gebraic. Therefore, the solubility of the dynamic equations is not important, the
associated problems can be well or ill posed on the applied function spaces, etc...
For example the number of the equations can be less than the number of variables in
the basic state space. The wanted fields, the functions searched in the final resulting
differential equation can be different from the basic state [28].

Let us give a simple example to illustrate the role of derivative constraints and
some other aspects of the above considerations.

EXAMPLE 1 In this example the basic state space is formed by two times dif-
ferentiable real functions x : R �→ R. The constitutive space is spanned by the
basic state and its derivative (x, x′). We are looking for scalar valued differentiable
functions F and S as lying in the constitutive space so that

S′(x, x ′) ≥ 0

for all (x, x ′) satisfying the constraint

F(x, x ′) = 0. (1)

Evidently S′(x, x ′) = ∂1Sx ′ + ∂2Sx ′′, where ∂n denotes the partial derivative ac-
cording to the n-th variable. Therefore, the space of the process directions (the
space of independent variables in Liu’s theorem) is spanned by x′′. We are looking
for conditions on S and F so that the above inequality should be true for all (x, x′)
solving (1), but independently of the values of x′′. The degenerate case of Liu’s
theorem (Theorem 5.5) gives some conditions. The single Liu equation is

∂2S = 0.

Therefore S is independent of x′. The dissipation inequality can be written in the
following simple form

∂1Sx ′ = dS

dx
(x)x ′ ≥ 0. (2)
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The above inequality does not give any condition for F . However, let us observe,
that one of our previous assumptions was too strong. The process direction variable
x ′′ is not really independent of the state space, the derivative of (1) gives a further
restriction

∂1Fx ′ + ∂2Fx ′′ = 0. (3)

Considering this condition we apply Liu’s theorem (Theorem5.3) with the multi-
plier method, introducing the multipliers λ1 and λ2 for the constraints (1) and (3)
respectively

∂1Sx ′ + ∂2Sx ′′ − λ2(∂1Fx ′ + ∂2Fx ′′) − λ1F
= (∂1S − λ2∂1F)x ′ + (∂2S − λ2∂2F)x ′′ − λ1F ≥ 0.

Therefore, we can read the Liu equation as follows

λ2∂2F − ∂2S = 0.

Expressing the multiplier and substituting into the dissipation inequality we get

∂1Sx ′ − λ2∂1Fx ′ − λ1F = (∂1S − ∂2S(∂2F)−1∂1F)x ′ − λ1F ≥ 0.

In this example we face a partially degenerate case, hence with λ1 = 0 we can give
the general solution of the above inequality, as

∂1S − ∂2S(∂2F)−1∂1F = L(x, x ′)x ′,

where L is non-negative. Given a function S we can calculate F , with appropriate
conditions on L . For example, if S(x, x′) = x · x ′ and L = constant , then
F(x, x ′) = f (x L−1x ′) is a solution of the above equation for any f : R �→ R.

3. Weakly Non-local Dynamic Equation for an Internal Variable –
Ginzburg-Landau Equation

Ginzburg-Landau equation is one of the most important pattern forming equations
of physics [29]. Its physical content and the way to obtain it is sound and transparent.
The traditional derivation of the equation comprises two main ingredients (see e.g.
[30])

– The static, equilibrium part is derived from a variational principle.
– The dynamic part is added by stability arguments (relaxational form).

The two parts are connected loosely and in an ad hoc manner. As a classical
field equation defined on non-relativistic space-time, the Ginzburg-Landau equation
should be compatible with the general balance and constitutive structure of contin-
uum physics. Recently there have been several efforts to give a uniform reasoning
of the equation on a pure thermodynamic ground, and to generalize the method of
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the derivation [10, 24, 31, 18]. The treatment of Ginzburg-Landau equation is a
kind of test of weakly non-local (gradient) thermodynamic theories.

Let us denote a scalar internal variable (e.g. an order parameter of a second
order phase transition) characterizing the material by ξ . We assume a free energy
density that depends on the internal variable and also on the gradient of the internal
variable f (ξ,∇ξ). The usual form of the Ginzburg-Landau free energy density is

f (ξ,∇ξ) = f0(ξ) + γ (∇ξ)2/2, (4)

where γ is a material coefficient, f0 is the static (equilibrium) free energy and we
introduce the following notation �ξ = ∂ξ f (ξ,∇ξ) = f ′

0(ξ). Here ∂ξ is the partial
derivative by the variable ξ .

According to the traditional reasoning, the rate of change of ξ in a given
volume V is negatively proportional to the free energy changes of the material.

d

dt

∫
V

ξdV = −lδ
∫

V
f (ξ,∇ξ)dV . (5)

Here δ denotes the variation of the total free energy. If we assume that the above
statement is valid in any volume then we obtain the Ginzburg-Landau equation as

∂tξ = −l(∂ξ f − ∇ · ∂∇ξ f ) = −l(�ξ − γ �ξ), (6)

where ∂t denotes the partial time derivative, l is a material coefficient. Here we
assumed a fixed boundary, therefore, the change of the internal variable ξ is not
related to the mechanical motion.

In the following we apply Liu’s procedure [32] to derive the Ginzburg-Landau
equation from different assumptions.

We are looking for a dynamic equation of ξ in the following general form

∂tξ − G = 0, (7)

where G is a constitutive function, which form is to be restricted by the Second
Law. Therefore, we require the following inequality for all solutions of the above
equations

∂t f + ∇ · j f ≤ 0. (8)

Here the specific free energy f and its current density jf are constitutive quantities.
We called the thermodynamic potential related to our internal variable ξ as free
energy because of traditional reasons based on the fact that internal energy and
temperature do not play any role in the following considerations. However, it is
well known that the above inequality is a consequence of the entropy inequality.
The difference in the sign of the free energy and entropy productions is based on the
different convexity properties. The existence of thermodynamic potential functions
is connected to the expected stability properties of the material in the case of simple,
homogeneous boundary conditions. If we postulate the Second Law in one system
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of variables for one kind of potential function, we can obtain other formulations by
suitable Legendre transformations.

Let us assume that the constitutive space, the domain of the constitutive func-
tions G, f and j f is spanned by ξ , ∇ξ , ∇2ξ and ∇3ξ . ∇ i denotes the i-th spatial
derivative of the corresponding function. In this case the above inequality can be
written as

∂t f + ∇ · j f = ∂1 f ∂tξ + ∂2 f · ∇∂tξ + ∂3 f : ∇2∂tξ + ∂4 f · : ∇3∂tξ

+ ∂1j f · ∇ξ + ∂2j f : ∇2ξ + ∂3j f · : ∇3ξ + ∂4j f :: ∇4ξ ≤ 0.

Here ∂i denotes the partial derivative of the corresponding constitutive function
according to its i-th variable, respectively. The dots always denote full contraction
of the quantities of different tensorial orders.

One can see that the space of the process directions (independent variables) is
spanned by ∂tξ , ∇∂tξ , ∇2∂tξ , ∇3∂tξ and ∇4ξ . Moreover, let us observe that these
variables are not really independent, the gradient of (7) connects them. Therefore,
in addition to (7) one should consider the following constraint

∇∂tξ − ∇G = ∇∂tξ − ∂1G∇ξ − ∂2G · ∇2ξ − ∂3G : ∇3ξ − ∂4G· : ∇4ξ = 0. (9)

We can recognize a peculiarity of weakly non-local (gradient) theories. The con-
straints depend on the particular state space, some space derivatives of the original
constraints (e.g. dynamic equations) further restrict the process direction space,
therefore, they should be considered in Liu’s theorem as additional constraints.
One can find other examples on the application of derivative constraints with in-
ternal variables and Coleman-Noll technique [3] and also with Liu’s procedure
[26, 27].

Introducing �1 and �2 Lagrange-Farkas multipliers for the constraints (7) and
(9) respectively, one can get the following Liu equations

∂1 f = �1,

∂2 f = �2,

∂3 f = 0,

∂4 f = 0,

(∂4j f + �2∂4G)s = 0.

Here the superscript s denotes the symmetric part of the corresponding fourth order
tensor. The first two equations determine the multipliers. From the third and fourth
equations it follows that the free energy does not depend on its third and fourth
variables s = s(ξ,∇ξ). Taking into account these requirements one can give a
solution of the fifth equation and determine the free energy current as

j f (ξ,∇ξ,∇2ξ,∇3ξ) = −∂2 f (ξ,∇ξ)G(ξ,∇ξ,∇2ξ,∇3ξ)+j0(ξ,∇ξ,∇2ξ). (10)
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For the sake of clarity we explicitly denoted the variables of the corresponding
functions. j0 can be an arbitrary function. With the above solution of the Liu
equations the dissipation inequality can be simplified considerably

∇ · j0 + (∂ξ f − ∇ · ∂∇ξ f )G ≤ 0. (11)

Now we treat two special cases.
1) Let us assume that j0 ≡ 0. In this case one can give the general solution

of the above inequality. That solution can be interpreted by the well-known tra-
ditional method of irreversible thermodynamics, choosing appropriate forces and
currents. Assuming that the free energy is the primary quantity (given by static
measurements), G is the constitutive quantity to be determined, the thermodynamic
current and it should be proportional to the given function, the thermodynamic
force. Therefore, the Ginzburg-Landau equation follows as

∂tξ = G = −L(∂ξ f − ∇ · ∂∇ξ f ), (12)

where L is a non-negative constitutive function. (12) is the Ginzburg-Landau equa-
tion. One can get back the traditional (6) form using the specific free energy function
with a form like (4) and dealing with a strictly linear theory in a thermodynamic
sense, where L is a constant material coefficient.

2) Now let us investigate the case when the additional free energy current j0 is
not zero. Our principal assumption is that any changes of the free energy should be
connected to the change of ξ . In particular, the current of the free energy vanishes
if ξ is constant,

j0 = AG. (13)

In addition, we should require that G does not depend on the third derivative of ξ ,
G = G(ξ,∇ξ,∇2ξ). Similar assumption was introduced by Nyíri [20] and later
exploited extensively in [18]. Now (11) can be written as

(∇ · A)G + A · ∇G + (∂ξ f − ∇ · ∂∇ξ f )G =
G [∂ξ f + ∇ · (A − ∂∇ξ f )

]+ A · ∇G ≤ 0. (14)

Now one can recognize the functions A and G as thermodynamic currents, the
functions to be determined in accordance with the inequality above. A general
Onsagerian solution can be written as

A = L11∇G + L12(∂ξ f + ∇ · (A − ∂∇ξ f )),

G = L21∇G + L22(∂ξ f + ∇ · (A − ∂∇ξ f )),

where L11, L12, L21 and L22 are constitutive functions with a suitable tensorial
order, the components of the conductivity matrix L which is negative definite.

In isotropic materials L12 = 0 and L21 = 0 and L11 = −l1I, L22 = −l2
where l1 and l2 are non-negative scalar constitutive functions. In this case A can be
eliminated, resulting in

∂tξ = G = −l2(∂1 f − ∇ · ∂2 f ) + l2∇ · (l1∇∂tξ). (15)
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Eq. (15) is a generalization of the Ginzburg-Landau equation with a characteristic
additional term containing the second spatial derivative of the rate of ξ . The ad-
ditional term does not change the equilibrium solutions of the equations. It was
derived by Gurtin [10] for the Ginzburg-Landau and Cahn-Hilliard equations by
the hypothesis of microforce balance. In [18] I have argued that the appearance of
this kind of corrections is a natural consequence of the generalization of the entropy
current in the case of dynamic internal variables. The consequences of this kind of
terms were observed in different thermodynamic systems. E.g. adding this term to
the Cattaneo-Vernote equation of heat conduction one obtains the Guyer-Krumhansl
equation. Regarding diffusion problems see e.g. [33].

4. Conclusions and Discussion

The requirement of a non-negative entropy production is a strong form of the Second
Law. It contains two independent assumptions: the existence of a thermodynamic
potential function and a dynamics that makes this potential function increase. The
stability of materials in isolated systems incorporates some other conditions (e.g.
concave entropy function), too (see [34] in the case of discrete systems). Coleman-
Mizel methodology is a kind of basic philosophical requirement of a thermodynamic
theory: the acceptable theories are those, where the entropy inequality is the conse-
quence of pure material properties and independent of other elements of the theory
(e.g. initial conditions). Considering only general principles ensures a kind of
universality and some stability properties to any thermodynamic theories.

It is interesting to know that the doubled variational-thermodynamic structure
of the Ginzburg-Landau equation can be generalized considerably. That is the
idea behind the General Equation for the Non-equilibrium Reversible-Irreversible
Coupling (GENERIC) [35, 36, 37], where the variational part and a formalism
from mechanics plays the leading role (different brackets, geometrical point of
view, etc.), but both parts are represented. In this paper we unified the variational
and the thermodynamic parts of the derivation of the Ginzburg-Landau equation on
a pure thermodynamic ground, where we did not refer to any kind of variational
principle. However, the derived static part turned out to have a complete Euler-
Lagrange form. The dynamic part contains a first order time derivative, therefore,
one cannot hope to derive it from a variational principle of the Hamiltonian type
[38]. In our approach we get the ‘reversible’, ‘variational’ part as a specific case
of the thermodynamic, irreversible thinking, but one cannot hope the contrary, the
irreversible part cannot be derived from a variational, reversible thinking.

Understanding the compatibility of the weakly non-local theories with the
Second Law it can be considered as one of the challenges of contemporary non-
equilibrium thermodynamics. In this paper it was shown that one of the most impor-
tant pattern forming equations, the Ginzburg-Landau equation, was a straightfor-
ward consequence of the entropy inequality in a non-locally extended constitutive
space. One can consider higher order derivatives in the constitutive state space and
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higher order derivatives of the constraints to investigate different materials.
Weakly non-local, pattern forming equations emerge in different fields of

physics independently of thermodynamic argumentation [39, 40]. Cross and Ho-
henberg argued that one could not expect general principles beyond free energy
minimization and reviewed perturbation techniques to get the corresponding ‘am-
plitude’ or ‘phase field’ equations. In this paper a general thermodynamic approach
to pattern forming equations is proposed. The method is fully compatible with clas-
sical ‘linear irreversible thermodynamics’ [41, 42] and also with the free energy
minimization techniques. However, we have shown that the deeper Second Law
argumentation can be more informative than the traditional variational approaches.
The reviewed general concepts outline the mathematical background and the key
ingredients of an efficient formalism to exploit the Second Law in weakly non-local
continuum theories.

5. Appendix: Liu’s Theorem as a Variant of Farkas’ Lemma and Some of its
Consequences

In 1972 Liu introduced a method of the exploitation of the entropy principle [32].
Liu’s procedure became a basic tool to find the restrictions posed by the entropy
inequality. The method is based on a linear algebraic theorem, called Liu’s theorem,
in the thermodynamic literature [7, 25] and on an interpretation of the entropy
inequality, one of the fundamental ingredients of the Second Law. Recently, Hauser
and Kirchner recognized that Liu’s theorem is a consequence of the fundamental
theorem of linear inequalities, a famous statement of optimization theory and linear
programming, the Farkas’ lemma [43]. That theorem was proved first by Farkas
in 1894 [44] and independently by Minkowski in 1896 [45]. In this appendix
we formulate and generalize Liu’s theorem in a way that it is best adapted to our
purposes and shows the whole train of thought from Farkas’ lemma to Liu’s theorem,
giving a simple proof to every statement in question.

Farkas’ lemma can be formulated in several different forms that are more or
less equivalent [46, 47]. Here we start from a simple variant.

LEMMA 5.1 (FARKAS) Let ai �= 0 be independent vectors in a finite dimensional
vector space V, i = 1 . . . n, and S = {p ∈ V

∗ | p · ai ≥ 0, i = 1 . . . n}. The
following statements are equivalent for a b ∈ V:

(i) p · b ≥ 0, for all p ∈ S.
(ii) There are non-negative real numbers λ1, . . . , λn such that b =∑n

i=1 λiai .

Proof : S is not empty. In fact, for all k, i ∈ {1, . . . , n} there is a pk ∈ V
∗

such that pk · ak = 1 and pk · ai = 0 if i �= k. Evidently pk ∈ S for all k.
(ii) ⇒ (i) p ·∑n

i=1 λiai = ∑n
i=1 λip · ai ≥ 0 if p ∈ S.

(i) ⇒ (ii) Let S0 = {y ∈ V
∗ | y · ai = 0, i = 1...n}. Clearly ∅ �= S0 ⊂ S.

If y ∈ S0 then −y is also in S0, therefore y · b ≥ 0 and −y · b ≥ 0 together.
Therefore for all y ∈ S0 it is true that y · b = 0.
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As a consequence b is in the set generated by {ai }, that is, there are real
numbers λ1, ..., λn such that b = ∑n

i=1 λiai . These numbers are non-negative,
because with the previously defined pk ∈ S, 0 ≤ pk · b = pk · ∑l

i=1 λiai =
λipk · ai = λk is valid for all k. �

REMARK 5.1 In the following, the elements of V
∗ are called independent variables

and V
∗ itself is called the space of independent variables. The inequality in the first

statement of the lemma is called aim inequality and the non-negative numbers
in the second statement are called Lagrange-Farkas multipliers. The inequalities
determining S are the constraints.

In the calculations an excellent reminder is to use Lagrange-Farkas’ multipli-
ers similarly to Lagrange multipliers in the case of conditional extremum problems:

p · b −
n∑

i=1

λip · ai = p ·
(

b −
n∑

i=1

λi · ai

)
≥ 0, ∀p ∈ V

∗

From this form we can read the second statement of the lemma.

REMARK 5.2 The original statement does not require the independency of the
vectors in the constraint. We need some extra conditions and that generalization
destroys the simplicity of the proof. However, we do not need this generalization in
thermodynamics.

The geometric interpretation of the theorem is important and graphic: either
vector b belongs to the cone generated finitely by the vectors ai (Cone(a1, ..., an) =
{λ1a1 + ... + λnan | (λ1, ..., λn) ∈ R

+n), or there exists a hyperplane separating b
from the cone.

5.1. Affine Farkas’ Lemma

This generalization of the previous lemma was first published simultaneously by A.
Haar and J. Farkas in the same number of the same journal, with different proofs
[48, 49]. Later it was reproved independently by others several times (e.g. [50, 47]).
Here we give a simple version again.

THEOREM 5.2 (AFFINE FARKAS) Let ai �= 0 be independent vectors in a finite
dimensional vector space V and αi real numbers, i = 1...n and SA = {p ∈ V

∗ |
p · ai ≥ αi , i = 1...n}. The following statements are equivalent for a b ∈ V and a
real number β:

(i) p · b ≥ β, for all p ∈ SA.
(ii) There are non-negative real numbers λ1, ..., λn such that b =∑n

i=1 λiai and
β ≤ ∑n

i=1 λiαi .
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Proof : SA is not empty. In fact, αipk ∈ SA for all k (pk ·ak = 1 and pk ·ai = 0
if i �= k as previously).

(ii) ⇒ (i) p · b = p ·∑n
i=1 λiai = ∑n

i=1 λip · ai ≥ ∑n
i=1 λiαi ≥ β.

(i) ⇒ (ii) First we will show indirectly that the first condition of lemma5.1
is a consequence of the first condition here, that is if (i) is true then p · b ≥ 0, for
all p ∈ S.

Thus, let us assume the contrary, hence there is p′ ∈ S, for which p′ · b < 0.
Take an arbitrary p ∈ SA, then p + kp′ ∈ SA for all real numbers k. But now
(p + kp′) · b = p · b + kp′ · b < β, if k ≥ β−p·b

p′·b . That is a contradiction.
Therefore, according to Farkas lemma (Lemma 5.1) there exist Lagrange-

Farkas multipliers λ = (λ1, ..., λn) ∈ R
n+ such that b = ∑n

i=1 λiai . Hence
β ≤ infp∈SA{p ·∑n

i=1 λiai } = infp∈SA{
∑n

i=1 λip · ai } = ∑n
i=1 λiαi . �

REMARK 5.3 The multiplier form is a good reminder again

(p ·b−β)−
n∑

i=1

λi(p ·ai −αi) = p ·(b−
n∑

i=1

λi ·ai )−β+
n∑

i=1

λiαi ≥ 0, ∀p ∈ V
∗.

REMARK 5.4 The geometric interpretation is similar to the previous one, but
everything is affine.

5.2. Liu’s Theorem

Here the constraints are equalities instead of inequalities, therefore the multipliers
are not necessarily positive.

THEOREM 5.3 (LIU) Let ai �= 0 be independent vectors in a finite dimensional
vector space V and αi real numbers, i = 1...n and SL = {p ∈ V

∗ | p · ai = αi , i =
1...n}. The following statements are equivalent for a b ∈ V and a real number β:

(i) p · b ≥ β, for all p ∈ SL,
(ii) There are real numbers λ1, ..., λn such that

b =
n∑

i=1

λiai (16)

and

β ≤
n∑

i=1

λiαi . (17)

Proof : A straightforward consequence of the previous affine form of Farkas’
lemma because SL can be given in a form SA with the vectors ai and−ai , i = 1, ..., n:
SL = {p ∈ V

∗ | p · ai ≥ αi , and p · (−ai ) ≥ −αi , i = 1...n}.
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Therefore, there are non-negative real numbers λ+
1 , ..., λ+

n and λ−
1 , ..., λ−

n
such, that b = ∑n

i=1(λ
+
i ai − λ−

i ai ) = ∑n
i=1(λ

+
i − λ−

i )ai = ∑n
i=1 λiai and

β ≤ ∑n
i=1(λ

+
i αi − λ−

i αi ). �

REMARK 5.5 The multiplier form is a help in the applications again

0 ≤ (p ·b−β)−
n∑

i=1

λi(p ·ai −αi ) = p ·(b−
n∑

i=1

λi ·ai )−β+
n∑

i=1

λiαi , ∀p ∈ V
∗.

REMARK 5.6 In the theorem with Lagrange multipliers for a local conditional
extremum of a differentiable function we apply exactly the above theorem of linear
algebra after a linearization of the corresponding functions at the extremum point.

Considering the requirements of the applications we generalize Liu’s theorem
to take into account vectorial constraints. First of all let us remember some well
known identifications of linear algebra: Lin(U∗, V) ≡ Bilin(U∗×V

∗, R) ≡ V⊗U,
where Bilin denotes the bilinear mappings of the corresponding spaces (see e.g.
[51]).

THEOREM 5.4 (VECTOR LIU) Let A �= 0 in a tensor product V ⊗ U of finite
dimensional vector spaces V and U. Let α ∈ U and SV L = {p ∈ V

∗ | p · A = α}.
The following statements are equivalent for a b ∈ V and a real number β:

(i) p · b ≥ β, for all p ∈ SV L .
(ii) There is a λ ∈ U

∗ such that

b = A · λ, (18)
and

β ≤ λ · α. (19)

Proof : Let us observe that we can get back the previous form of the theorem
by introducing a linear bijection K : U → R

n, a coordinatization in U. Therefore,
applying it for K · A = (A)i = ai , K · α = (α)i = αi and K′ · A = a′

i , K′ · α = α′
i

we get that b = ∑n
i=1 λiai = ∑n

i=1 λ′
ia

′
i . Thus λ′

i = K′∗−1 · K∗ · λi . Therefore,
there is a λ ∈ U, independently of the coordinatization, with the components λi and
λ′

i in the coordinatizations K and K′. �
The previously excluded degenerate case of A = 0 deserves special attention.

Now we require the validity of the aim inequality for all p ∈ V
∗ without any

constraint. The consequences can be formulated as previously and the proof is
trivial.

THEOREM 5.5 (DEGENERATE LIU) The following statements are equivalent for
a b ∈ V and a real number β:

(i) p · b ≥ β for all p ∈ V
∗.
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(ii) b = 0 and β ≤ 0.

REMARK 5.7 The practical application rule is that if A = 0, then the multiplier
is zero.

REMARK 5.8 In continuum physics and thermodynamics the corresponding form
of (18) and (19) are called Liu equation(s) and the dissipation inequality, respec-
tively. We apply the same names for the degenerate case, too. There the Lagrange-
Farkas multipliers are called simply Lagrange multipliers. Our nomenclature hon-
ors Farkas and emphasizes the difference between the two kinds of multipliers. It can
be important also to make a clear distinction of a similar but different nomenclature
and method in variational principle construction in continuum physics [52].
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mészettudományi Értesítő, 12 (1894), pp. 457–472. (in Hungarian.)

[45] MINKOWSKI, H., Geometrie der Zahlen, Teubner, Leipzig und Berlin, 1896.
[46] ROCKAFELLAR, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey,

1970.
[47] SCHRIVER, A., Theory of Linear and Integer Programing, John Wiley and Sons, Chicester-etc..,

1998.
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