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Abstract

This article is devoted to the solution of the thermal field of a particle for Bi > 0 with an ideal spherical shape and the behavior of the 

temperature in the fluid phase with countercurrent contact.

After establishing the underlying simplified assumptions and defining the initial and boundary conditions in the form of dimensionless 

criteria, a mathematical formulation of the problem is transformed into a suitable and solvable form. The formulation is then used in 

the analysis.
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1 Introduction
In the mathematical formulation of the problem, a few 
simplifications are assumed: The granular material is 
monodisperse, with an ideal spherical shape, existing 
in direct contact with the fluid of a countercurrent heat 
exchanger. The particles of the material are homogeneous 
and isotropic. The thermal-physical properties of the par-
ticles are not dependent on temperature. It is assumed that 
the heat transfer coefficient α is constant over the entire 
surface of the particle.

In the upper part of the exchanger a granular mate-
rial enters with spherical shape of radius R, mass flow M, 
and an increasing solid phase temperature Ts0 throughout 
the entire volume of the particle. In this cross section 0, 
the fluid phase exits with a mass flow Mf of known (out-
put) temperature Tf 0 . The required variables are indicated 
in Fig. 1 in order to write the balance equations for the 
temperature. It is assumed that the countercurrent move-
ment of the particles and fluid phase occur with respect to 
the law of piston flow, with ideal mixture of both phases 
assumed in the transverse direction of the heat exchanger’s 
cross section. Heat exchange occurs only between the par-
ticles and the fluid phase while the whole heat exchanger 
is perfectly insulated. The thermal-physical variables of 

the solid material and fluid phase (specific heat, coefficient 
of thermal conductivity) are assumed to be constant and 
independent of the temperature.

Applying the aforementioned assumptions and known 
parameters of the contacting phases within a cross section 
of the heat exchanger creates quasi-static thermal condi-
tions. The article strives to analytically describe the ther-
mal fields of these conditions.

Fig. 1 Schematic of the contact in a countercurrent heat exchanger
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2 Mathematical formulation of the problem
We used the following notations in the mathematical descrip-
tion of the temperature fields of the solid and fluid phases:

a coefficient of temperature diffusivity [m2s−1]
c specific heat [J kg−1 K−1]
C integration constant
E Young’s modulus [MPa]
f function value
G shear modulus [MPa]
m thermal capacitance ratio of the contact phases [–]
M mass flow [kg s−1]
r radius of the sphere [m]
R outer radius of the sphere [m]
t time [s]
T temperature [K]
α coefficient of heat transfer [W m−2 K−1]
ρ dimensionless radial coordinate [–]
λ heat conductivity [W m−2 K−1]
Θ dimensionless temperature [–]
Subscripts:
0 value with regard to the cross section 0
1 value with regard to the cross section 1
c calorimetric
f fluid phase
p variable value on the surface
s solid phase

The thermal field of a particle with spherical shape 
existing in the aforementioned conditions can be described 
in terms of the Fourier-Kirchhoff equation for heat con-
duction (in spherical coordinates) [7]
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The equation is solved with the following initial 
conditions
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In the process of heat exchange, the thermal profile is 
symmetric therefore,
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Heat exchange on the surface of the particle is deter-
mined by Fourier’s condition for heat conduction
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The temperature of the fluid and solid phases are mutu-
ally related with the heat equation in the form:

− −( ) = −( )M c T T M c T Tf f f f s s sc s0 0 . 	 (5)

The introduction of the mean calorimetric tempera-
ture Tsc at any arbitrary cross section in the heat exchanger 
results in a comparison between thermal capacities of a 
particle with constant temperature Tsc with the thermal 
capacity determined by the real temperature distribution 
over the particles
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3 Solution of the problem
A differential equation (Eq. (1)) in this form is solvable 
however it is not possible to introduce boundary and initial 
conditions. In order to introduce them into the equations, 
dimensionless variables are introduced to the calculation:

Identically defined dimensionless variables are often 
used for analytical solution of the temperature field in a 
couple problems in technical literature [5, 6]. The solution 
of such problems can be found for instance in [1-3], which 
also allow for the determination of the stress field of the 
solid phase [4]. The introduction of dimensionless vari-
ables also makes it easier to generalize the experimental 
results of heat transfer measurements [7].

After introducing these variables a system of equations 
similar to concurrent contact is obtained [1]:
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After further substitution into Fourier’s method, it is 
possible to find a solution to Eq. (7) and after inserting 
the boundary and initial conditions for the solid phases 
thermal behavior a solution can be found in the form of an 
infinite series.
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The mean calorimetric temperature of the solid phase 
becomes:
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And from this, using Eq. (10), the relative temperature 
difference of the fluid phase can be determined:

Θ f
i i i i

i i i

m
m

k k k k

m k k k
=

−
+

( ) − ( ) 

− ( ) − ( ) 

1

1
3

2

6

2
sin cos

sin cos  − −
( ) ( )









( )
−

( )

=

∞

∑
2

41

2

1
sin cos

sin cos

k k
k

k

k
k

k
ki i

i
i

i

i

i

i

i







−e k Foi
2

.

(14)

In Eqs. (12)-(14), ki is the root of the transcendental 
equation
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The solution of Eq. (15) differs to that of the ratio of 
conductive equivalents of both contact phases and also 
obtains a differing temperature behavior of the contact 
phase. If m <1  all roots of the transcendental equation 
are real numbers. The equation is represented in Fig. 2 for 

the ratio of thermal capacities of both phases m = 0 5.  and 
Biot number Bi = 3 .

This graphical representation was performed using a 
software Mathematica considering the first 25 roots of 
Eq.  (15) for m = 0 5.  a Biot number of Bi = 3  obtaining 
the solution for dimensionless relative temperature differ-
ence of the solid phase Θs Foρ ,( )  which is represented in 
Fig. 3. Fig. 4 represents the behavior of dimensionless rela-
tive temperature difference of the fluid phase and behavior 
of the relative temperature difference of the solid phase at 
the center and surface of the spherical particle.

In the case where the ratio between thermal capaci-
ties of the contacting phases are m >1  then the charac-
ter of the temperature changes over the length of the heat 
exchanger. In this case the first root of the transcendental 
equation (Eq. (15)) is an imaginary number. Equation (15) 
for m = 2  and Bi = 3  is represented in Fig. 5.

Table 1 Dimensionless variables
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Fig. 2 Roots of the transcendental equation for m = 0.5 and Bi = 3

Fig. 3 Behavior of the relative temperature difference of the solid phase 
Θs dependent on the radius ρ and Fo number
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In these cases, Eqs. (12)-(14) also allow for the solu-
tion of quasi-static thermal fields of a granular material 
Θs f m Fo= ( , , )ρ  and temperature of the fluid phase 
Θ f f Fo= ( )  over the entire length of the heat exchanger 
for the given boundary and initial conditions.

A graphical representation of the case where m = 2  and 
Bi = 3  can be seen in Fig. 6.

Fig. 7 shows the behavior of particle temperature Θs for 
chosen parameters of the radius ρ , as well as the behavior 
of the fluid phase temperature Θf dependent on time Fo .

4 Analysis of the results
The analytical results provide the temperature distribu-
tion in a spherical particle along the height of the heat 
exchanger. For the heat capacity ratio of the phases m <1
the temperature of the particles is gradually brought to 
equilibrium in the overall volume of the exchanger. The 
temperature gradient in the particles steadily decreases 
with time and finally the particle temperature reaches 

the temperature of the fluid phase. In case, when the heat 
capacity ratio of the phases m >1  and Fo > 0  the tem-
perature gradient in the particles increases with time and 
as a result, the temperature of the solid phase never reaches 
the temperature of the fluid phase. During heating, cool-
ing and drying processes it is therefore always necessary 
to carry out a detailed thermal analysis in order to deter-
mine the temperature distribution over the volume of the 
exchanger. Increasing temperature gradients in particles 
may lead to overheating/overcooling of their near surface 
layers and eventually cause inadmissible thermal stresses 
in these areas.

Fig. 4 Behavior of the temperature of spherical particles for a chosen 
radius and temperature of the fluid phase at m = 0.5 and Bi = 3

Fig. 5 Roots of the transcendental equation for m = 2 and Bi = 3

Fig. 6 Behavior of the relative temperature difference of the solid phase 
Θs dependent on the radius ρ and Fo number

Fig. 7 Behavior of dimensionless relative temperature difference 
of the solid phase Θs for chosen radiuses ρ and fluid phases Θf 

dependent on Fo number
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