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Abstract

Solving the differential equation of the heat conduction the temperature in each point of the body
can be determined. However, in the case of bodies with boundary surface of sophisticated geometry
no analytic method can be used. In this case the use of humerical methods becomes necessary. The
finite element method is based on the integral equation of the heat conduction. This is obtained
from the differential equation using variation calculus. The temperature values will be calculated on
the finite elements. Then, based on these partial solutions, the solution for the entire volume will
be determined. Using this method we can divide into elements also fields with any border. In this
paper the temperature distribution in an orthotropic body and in a pipeinsulation is analysed using a
software developed by the author.
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1. Introduction

To establish the temperature distribution in a solid body, in many cases numerical
methods should be used in heat transfer calculations. The most used methods are
the finite difference and the finite e ement method.

The finite difference method is based on the differential equation of the heat
conduction, which is transformed into a numerical one. The temperature values
will be calculated in the nodes of the network. Using this method convergence and
stability problem can appear.

The finite element method is based on the integral equation of the heat con-
duction. Thisis obtained from the differential equation using variation calculus.
The temperature values will be calculated on the finite elements. Then, based on
these partial solutions, the solution for the entire volume will be determined. Using
this method we can divide into elements also fields with unregulated border.

In this paper the temperature distribution is analysed in a solid body, with
linear variation of the properties, using the finite element method.
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2. TheAnalytical Model of the Heat Conduction

The temperature in a solid body is a function of the time and space coordinates.
The points corresponding to the same temperature value belong to an isothermal
surface. Thissurface in atwo dimensional Cartesian system istransformed into an
isothermal curve.

Theheat flowrate Q representsthe heat quantity through anisothermal surface
Sinthetime unit:

Q= /S qds, )

where the density of heat flow rate g is given by the Fourier law:
ot
= —A— = —Agradt 2
q an gradt, @

where A isthe thermal conductivity of the material.
The thermal conductivity of the building materials is the function of the tem-
perature and the variation can accordingly be expressed as:

A= %oll+b(t —1to)], 3

where: Aq is the thermal conductivity corresponding to the § temperature; b —
material constant.

If there is heat conduction within an inhomogeneous and anisotropy material,
considering the heat conductivity constant in time, the temperature variation in
space and timeis given by the Fourier equation:

at ad N at ad N at d N at 4
pcar_ax<Xax)+ax(yay)+az<zaz)+Q°’ )
where: t isthe temperature; T —time; p — density of the material; ¢ — specific heat
of the material; Ay, Ay, A, —thermal conductivity in the directions x, y and z; Qy —
power of the internal sources.

To solvethedifferential equationsit isnecessary to have supplementary equa-
tions. These equations contain the geometrical conditions of theinterpretation field,
the starting conditions (at T = 0) and the boundary conditions. The boundary con-
ditions describe the interaction between the studied field and the surroundings. In
function of these interactions different conditions are possible:

« the Dirichlet ( type |) boundary conditions give us the temperature values
on the boundary surface § of the studied field (Fig. 1) like a space function
constant or variable in time:

t=09X,Y,z, 7) (5)
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t=fx.y.z,7)

q o, !

e

Fig. 1. Boundary conditions

* the Newton ( type Il) boundary condition gives us the value of the density of
heat flow rate trough the §; boundary surface of the studied field:

ot ot ot
q = )\,Xa—xnx—i-)\ya—yny-i-)\,zﬁnz, (6)

whereny, ny, n, arethecosinedirectors corresponding to thenormal direction
on the §; boundary surface.

« the Cauchy (type I11) boundary condition gives us the external temperature
value and the convective heat transfer coefficient value between the § bound-
ary surface of the body and the surrounding fluid:

ot Jat Jat
t—1t) = Ax—n Ay—nN Az—Ng, 7
al a) X3X x + yay y + zaz z (7)

where: « is the convective heat transfer coefficient from S, to the fluid (or
inversely); t, —the fluid temperature.

The analytical model described by the Egs. (4)...(7) can be completed with
the material equations which provide usinformation about variation of the material
properties depending on temperature. In the case of materials with linear physical
properties, this equations (A = const.) are not used in the model.

Solving the differential equation of the heat conduction @) we can determine
the temperature values in each point of the body. However, in the case of bodies
with boundary surface of sophisticated geometry, the Eq. @) cannot be solved
using analytical methods. In this case numerical methods should be applied. The

increasing availability of computers hasalso lead into the direction of more frequent
use of these methods.
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To use the finite element method, the transformation of the Egs. @)...(7) into
integral model is necessary. To realize this transformation we can use variation
calculus.

3. TheFinite Element Method

The temperature t (X, vy, z, ) which represent a solution for the differential heat
conduction Eq. (4) and for Egs. (5)...(7) conditions, a so represents a solution for
the steady state equation of the V field:

ST =0 6)

which is equivaent, from mathematical point of view, with the Egs. @)...(7) and
where I isthe functional of the heat conduction.

Consequently, in the integration of the Eq. (4) with Egs. (5)...(7) boundary
conditions are equivalent with the minimization of the I" functional:

1 at\2 at\2 at\? ot
F:[/§|:kx(a7) +)\y(a—y> +)»z(a—z> :| dV+/\/<PCa—T—QO>th
1
_thdS+Lat (Et—ta> ds )

Qo is positive when the internal sources produce heat and negative when these
sources absorb heat; q is positive when the body receives heat and negative when
the body yields heat to the surrounding fluid; « is positive on the surfaces where
the heat transfer happens from the body to the fluid and it is negative inversely.

If weassume asteady state heat transfer and the body does not content internal
heat sources the Eqg. (9) can be expressed as:

P [ () e (E) (2 av
2| 7 \ax Yoy “\ oz
—/ qtd8+/ at (}t —ta> ds. (10)
S s \2
Additionally, if the process is done within an isotropic and homogenous material,
we abtain:
Al fat\?  fat\? [oat)?
= == — — dv
/ﬂ[(ax) +(ay) +(az>}
1
—/ qtdS+/ at (——ta) ds. (1)
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Taking into account the Dirichlet boundary conditions the Eq. (L1) can accordingly

expressed as:
1| /at\? [ot\? [at\?
= =|(=— — — dv. 12
fVZ[(ax) +(ay) +(az” (42
The minimization of the functional is done correspondingly to each finite el ement.
The solution for the entire field is obtained joining the partial solutions.

4. Two-Dimensional Steady State Heat Conduction

Though the heat conduction is carried out within three-dimensional bodies, the
temperature distribution variation issignificant only in certain directions. Thus, the
analysis of temperature distribution in bars, plain or cylindrical wallsis done using
atwo-dimensional model.

In the steady state heat transfer processes the temperature does not depend on
the time, thusin the Eq. (9) at/dt = 0. In addition, at two-dimensional problems,
the temperature does not vary on z direction, thus dt/9z = 0.

4.1. General Equations of the Finite Element Method

In our case the Eq. (9) can be expressed as.
1 at\? at\? at\?
I = | — il — | — — Qot ¢ dV
/Vlz[ (ax> i y(ay> i (az” Q"]
—/ qtdS—i-/ at (Et—ta) ds. (13)
S s \2

Taking into account that the temperature function is not continuous on the entire
field, the Eq. (13) can be integrated only on the finite elements. On the entire field
thefunctiona T" can bewritten asasum of m functionals I'®, where misthe number

of finite elements:

r=>yre (14)
e=1

r—m 1/\atezkatezdv

-2 1/.3 (5) +»(5)

1
— | Qottdv — [ qtdS+ f ate(éte—ta) dS]. (15)
Se e

Ve
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In the Eq. (15) the ‘€’ exponent refers to afinite element.
For a given finite element the temperature t¢ can be calculated based on the
temperature values in the nodes:

t® = Nltl + N2t2 +---+ Nntn = [N] {t}e (16)

where: n isthe number of the finite element nodes; [ N] —form matrix of the finite
element; {t}e — vector of the temperature values in the nodes.

Inthe expression (15) appear the partial derivatesof thetemperature, therefore
the Eq. (16) should be derived:

ote dN; 9N dNy
R _ —_— “ .. t
X X X X 1
ay ay oy ay
If the thermal conductivities are written in matrix form:
A O
D] = X } 18
D] [0 " (18)

then the Eq. (15) can accordingly be expressed as:
1
re= [ 0300 IOII.AV - [ QiNItedv — [ aiNIit)eds
Ve Ve Sge

+ f  (NI{t)eds — / ata[NI{t}e dS. (19)
e S)te

Because
(it} " = ()17
(INI{t}e)? = (INI{t}e) T (IN1{t}e) = {t}SINTT[N]{t}e (20)
the Eq. (19) can be expressed as:
1
Fe=/E{t}l[J]T[D][J]{t}edV— Qo[N]{t}edV — [ q[N]{t}edS
Ve Ve Sqe
+/ %{t}l[N]T[N]{t}eds—/ atalN1{t}edS (21)

e

If we derive the matrix Eg. (21) the further equation is obtained:

o _ (/ [J]T[D][J]dV+/ ot[N]T[N]dS> {tle— | QoINI"dV
a{t}e Ve e Ve

— | qIN]T dS—/ at,[N]" dS. (22)
Se Sve
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BecausedV = hdA and dS = hdL, where h isthe thickness of the finite element,
dA —ariaof the finite element, dL — length of the finite element side

ore (/ [J]T[D [J]dA+/ a[N]T[N]dL> {t}e—h/ Qo[NT dA
{t}e Le Ae

—h | qIN]"dL—h [ aty[N]"dL. (23)

Le Le

The finite element thickness h is considered constant and equal with 1 m.
The Eq. (23), can be written asin compressed form:

e

o{t}e
where;

= [Kl{t}e — {f}. (24)

[k]:h/ [JI'[DI[JIdA+h [ «[N]T[N]dL (25)
Ae

Lae

{f}=h/ Qo[NI"TdA+h | qINI"dL+h [ aty[N]"dL, (26)
Ae

Lge Loe

where: [K] isthe matrix of the heat conduction corresponding to a finite element,
the first term is related to conduction and the second term to convection on the
L. Side of the S, boundary surface; { f} — vector of heat sources containing the
internal sources Qy, the density of heat flow rate g on the S, boundary surface and
convection on the S, boundary surface.

The minimization of the I" functional supposes the equality with zero of the
first derivate in each point of the studied field.

au} au}§: Ejznue @)

Introducing Eq. (24) in (27) we obtain the equation system corresponding to the
entire field:

K1{t} = {F}, (28)

=Yk {Fi=)_{f) (29)
1 1

where: [K] is matrix of heat conduction of the entire field; {F} — vector of heat
sources corresponding to studied field; {t} — vector of unknown temperatures.

TheEq. (28) representstheformwith finiteelement of thedifferential equation
of heat conduction, which contains a number of equations equal to the number of
the nodes with unknown temperature values.

where;
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4.2. Matrix of the Heat Conduction

If we use finite elements with triangle form in a certain point of the finite element,
using the relation (16) the t® temperature (Fig. 2), can be written as:

t
t® = Niti + Njt; + Nitk = [Ni Nj Ng] { § } = [N]{t}e, (30)
0%

where: t;, t;, ty arethetemperaturesini, j, k nodes(nodesof trianglefiniteelement);
[N] —form matrix of the finite element [6].
The conduction matrix of afinite element is;

(K] = [kl + [k2] (31)
where;

[kﬂzhf[J]T[D][J]dA; [kz]zhaf [N]T[N]dL. (32)
Ae Lue

The [J] matrix, using the relation (17) can be expressed as.

ote ON;  ON; 9Nk
il 2 20 7K t
IX X IX X !
{B} = ate = ON. aN; 3N { :Ij( } = [J]{t}e. (33)
ay ay dy 9y

Fig. 2. Finite element with triangle form
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If we derive the elements of the form matrix:
ON;  ONj; 9N

_ ax  ox  oX _ 1 b b b
R A e R A
ay 9y 9y

where A. isthe area of the finite element, and the b respective ¢ can be written as

[1]:
b=y — ¥ bj = Yk — ¥i; b = yi — Y
G = Xk — Xj; Cj =X — Xk; Ck = Xj — Xj.

(35)

Consequently, the [J] matrix is constant.
Because the A, and A, thermal conductivities do not vary for afinite element,
the [D] matrix is also constant, thus:

mﬂzh/[ﬂﬁmumAzhuﬂwuu%. (36)
Ae
Introducing the expression of [J] matrix from the Eq. (34) and the expression of
[D] matrix from the Eqg. (18):
|: A + AyGCiCi Axbi bj + AyGiCj Axbiby + AyCiCk :|

(37)

[Ki] = —

aA )\.ij b + AyCiGCi )\.ij bj + AyCjC; )»ij b, + AyCjCk

Axbibi + Ayoc Axbeby + AyaCi Axbibi + Aycick
The matrix [kp] from the Eq. (31) can be written as:
NiNi NiN; NN
[kz]:ha/ |: NiNi  NjN; o NjNg :| dL. (38)
Lae Nk N; Nk Nj Ni Nk

Using the L — natural coordinates and considering that convective heat transfer
exists on the jk side of the finite element, we obtain:

0O O 0
[kz]zha/ [O LiL; Lij}dL. (39)
Le | O LjLk Lkl
To solve the Eg. (39), the following relation should be used:
X] BUX; — X;
/ LeL? dx = X = X)) (40)
X (@+pB+1D)

Consequently for products with the same indices j or k is obtained:

210! »
Lae Lae Lee 2+0+1)! 3
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and for products with different indices j and k is obtained:

11! Lee
LiLxdL = LyLidL = ———— L e = —. 42
/Lae jLid /L Lidk =it = (42)
Introducing into Eqg. (39):
0 0O
haL
ko] = — “e{o 2 1] (43)
6 o1 2
If convective heat transfer existstheij or ki sides of the finite element are:
210 2 01
ho L haL
ko] = ““6[120}; [k2]=a°‘e{000] (44)
6 Looo 6 102

Thematrix [ky] exists only inthe case when at |east, on one side of the finite element
heat transfer isrealized by convection.

4.3. Vector of the Heat Sources

Thisvector isbased on the Eq. (26) from three terms, which can be cal culated using
the L — natural coordinates. Supposing that Qq is constant for a finite element,
using the followed relation:

ap By ¥ _ alply! 5 4
fAeL' S A= G 9
we abtain that:
Ni Li
{fQ}:h/ QO[N]TdAthO/ l N; ]dA:hQO/ l L }dA
Ae Ae Nk Ae Ly
1
_ hQoAe [ 1 } 46)
3 1

The second term, for a certain density of heat flow rate, corresponds to the heat
transfer on the boundary surface of the studied field. Supposing that the body
receives the heat flow through Ly = Lge side of the finite element, using the
relation (40) we obtain:

N Li
{fgy =h [ qIN]"dL = hq l 0 ]dL:hq l 0 }dL
Lae Lae | Nk Lae | Lk

hqLge 1
=Tq{cl>} (47)
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Thethird term, from the Eq. (26), corresponds to convective heat transfer on the jk
(Ljk = Lye) Side of the finite element. Using the relation (40) we obtain

0 0
{fa}=h/ ata[N]Tszhataf [ N; }dL:hataf l L } dL
Lee Loe Nk Loe Lk
0
_ %{ 1 } 48)
2 1

It could be observed that the element zero in the vector @7) and (48) can occupy
any position, corresponding to the side of finite element with heat transfer.

Based on the equation systems obtained for the finite elements, they can
realize the equation system for the entire studied field. This system can be solved
using analytical or iterative methods.

In practice there are many situations where it is indispensable to know the
temperature distribution in abody (e.g. in different mechanic and electronic com-
ponents). In civil engineering it isimportant to analyse the temperature distribution
in thermal bridges, in pipe walls, in insulation materials. In present there are dif-
ferent programms on the software market which permit numerical analysis of the
temperature distribution (e.g. WAEBRU) but these programms are too expensive
and our department cannot buy them. In this context to analyze the temperature
distribution in asolid body under steady state heat transfer regime using the mathe-
matical model presented above the ATEFS software has been devel oped by authors
of this article. The equation system is solved using the Gauss method.

5. Application
5.1. Temperature Distribution in an Orthotropic Body

The temperature distribution is analysed in a solid body 500 x 400 mm sectional
dimensions (Fig. 3). The body receives heat flow on two sides: g, = 2320 W,
gy = 928 W. On the other two sides the body transmit heat by convection o =
ay = 23.2 W/(m?-K). The material of the body has orthotropic properties with
the following values of the thermal conductivities: A = 11.6 W/(m-K), Ay, =
5.8 W/(m-K).

The studied field is divided into 40 finite elements with 30 nodes.

Running the ATEFS program the following values of temperatures in the
nodes have been obtained:

The temperature distribution in the body is presented in Fig.4.

Wood is the only one orthotropic material which is used in civil engineering,
and this property should be taken into account at heat loss determination of the
buildings (e.g. heat flow direction perpendicular or parallel on the fiber).
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Fig. 3. Thestudied field

Table 1. Temperature valuesin the nodes

NN t[°C] NN t[°C] NN t[°C]
0o 1 2 3 4 5
1 4906 11 6758 21  90.67
2 6554 12 896 22 11910
3 7995 13 10002 23 14215
4 9339 14 12645 24 16168
5 10770 15 14275 25 178.73
6 5815 16 7809 26 107.37
7 77.09 17 103.4 27 137.49
8 9415 18 12489 28 16119
9 10088 19 14358 29 18101

10 12544 20 16035 30 198.15

5.2. Temperature Distribution in Pipe Insulation

Using the ATEFS programme the temperature distribution in pipe insulation was
analysed (Fig. 5). The calculus was made for a pipe with 800 mm nominal diam-
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Fig. 4. Thetemperature distribution in the studied body

eter and the warm water temperature was 150 °C. The ambient temperature was
considered 1 °C.

1 2a 2b 3
2
I
:ﬂuid / air
| 1
L INVA

Fig. 5. Structure of the analysed insulation: 1 — pipe wall; 2a, 2b —insulation layers; 3 —
protection coat

To obtain results which describe the real situation as exactly as possible the
convective heat transfer coefficient on the external insul ation surfacewas consi dered
variable with values between 10 and 25.6 W/(n?-K).

In Figs. 6 and 7 the analysed field and the temperature distribution are pre-
sented in the pipe section. It can be observed that due to the variable boundary
conditions on the insulation surface the isotherm curves are not circular curves
which are obtained when the classical calculus is used.
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Fig. 7. Temperature distribution in pipeinsulation

6. Conclusions

Thenumerical analysiswith thefinite element method represents an efficient way to
obtain the temperature distributions in steady state or unsteady state conductive heat
transfer processes. Using the presented method, different simulation programms
could be realized what makes it possible to effectuate a lot of different numerical
experiments of practical problems.
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