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Abstract

When the virtual work is considered as a time integral of virtual power, a generalized form of the virtual
work principle is obtained. The Euler-Lagrange equation of it gives an equation for the divergence
of the Truesdell rate of stress. The equation of motion on the stress rate field is one of the results of
this paper.
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1. Introduction

The generalization of virtual work principle emerges in the investigation of third
order wave or for example in supervision of finite element method. The problem
will be raised in case of third order wave.

The investigation of the third order wave necessitates the knowledge of the
dynamic compatibility equation. This equation rises from the first equation of
motion in case of the acceleration wave. Now it needs the time derivative of the
first equation of motion. The material time derivative isn’t simple in the current
configuration. Using the principle of virtual power, namely the principle of virtual
work also for finite deformation, the derivative will be obvious and indisputable.
We assume that the integral of the virtual power with respect to time is the virtual
work. Hence, from the principle of virtual work the time derivative of the first
equation of motion can be obtained and then the dynamical compatibility equation
can be calculated. The time derivative of the first equation of motion will be called
the equation of motion on the stress rate field. Many authors have dealt with this
problem in the case when the body was in equilibrium [8, 9, 10].

2. The Principle of Virtual Work

In continuum mechanics the principle of virtual power is:
∫

V
tklv∗

k;l dV =
∫

V
qkv∗

k dV +
∫

Ap

p̃kv∗
k dA , (1)
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where tkl , v∗
k , v∗

k;l and qk denote the Cauchy stress, the virtual velocity, the virtual
velocity gradient and the difference between the body force and the force of inertia
in domain V and p̃k is the surface force on boundary surface Ap . A is Av + Ap ,
on Av the velocity ṽk is known.

The stress tensor in (1) satisfies the second Cauchy equation of motion, that
is, tkl = t lk .

Assume as a starting point that the integral of the power for a given period
[t1, t2] means the work during this period. Thus, (1) integrated with respect to time
t gives ∫ t2

t1

∫
V

tklv∗
k;l dV dt =

∫ t2

t1

∫
V

qkv∗
k dV dt +

∫ t2

t1

∫
A

p̃kv∗
k dA dt. (2)

As it can be seen, the virtual deformation rate v∗
kl on the left hand side of the

equation has been replaced by virtual velocity gradient v∗k;l . This replacement
leaves the product tklv∗

kl unaltered since tkl = t lk . The material time derivative of
the deformation gradient is

ẋ k
,K = vk

;px p
,K

and from this,
vk

;p = ẋ k
,K X K

,p (3)

With the displacement vector u used and the derivative thereof with respect to time,
then to X K , written in indexed form are

vk = u̇k and ẋk
,K = u̇k

;qxq
,K ≡ u̇k

:K ,

respectively.
Thus, (3) becomes

vk
;p = u̇k

,K X K
,p = u̇k

;p. (4)

With the volume integral on the left side of (2) transformed to the initial configu-
ration, the integrals with respect to time and over volume V0 can be interchanged:
∫

V0

∫ t2

t1

t l
k u̇∗k

,K X K
,l J̄ dt dV0 =

∫
V0

∫ t2

t1

J̄ qk u̇∗
k dt dV0 +

∫
A0

p

∫ t2

t1

J̄ tkl u̇∗
k X K

,l dt dA0
K ,

(5)
where J̄ = dV

dV0
.

Consider now the integrals with respect to time, one after the other:∫ t2

t1

J̄ t l
k X K

,l u̇∗k
,K dt =

∫ t2

t1

[(
J̄ t l

k X K
,l u∗k

,K

) − (
J̄ t l

k X K
,l

)
u∗k

,K

]
dt.

The first integral can be calculated from time t1 to t2 on the right side, that is,∫ t2

t1

J̄ t l
k X K

,l u̇∗k
,K dt = (

J tl
ku∗k

;l
)t2

t1
−

∫ t2

t1

J̄
(
t p
k v

q
;q + ṫ p

k − t l
kv

p
;l
)

X K
,pu∗k

,K dt. (6a)
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After similar transformations, the first integral with respect to time on the right side
of (5) is as follows:∫ t2

t1

J̄ qk u̇∗
k dt = (

Jqku∗
k

)t2
t1

−
∫ t2

t1

J̄
(
q̇k + vs

;sq
k
)

u∗
k dt (6b)

Here also, virtual displacement u∗
k �= 0 at time t1 and t2 in (6b).

Finally, after transformation of the second integral on the right side of (5),∫ t2

t1

J̄ tkl X K
,l u̇∗

k dt = (
J tkl X K

,l u∗
k

)t2
t1

−
∫ t2

t1

J̄
(
tkpvs

;s + ṫ kp − tklv
p
;l
)
X K

,pu∗
k dt. (6c)

With Eqs. (6a), (6b) and (6c) substituted into (5) and after proper rearrangement,
the principle of virtual work is [1].∫ t2

t1

∫
V

(
ṫ kp − tkqv

p
;q + tkpvs

;s
)
u∗

k;p dV dt =
∫

V

[(
t lk
;l + qk

)
u∗

k

]t2
t1

dV

+
∫

Ap

[(
p̃k − tklnl

)
u∗

k

]t2
t1

dA

+
∫ t2

t1

∫
V

(
q̇k + qkvs

;s
)
u∗

k dV dt

−
∫ t2

t1

∫
Ap

(
ṫ kp + tkpvs

;s − tklv
p
;l
)

n pu∗
k dAdt, (7)

therefore
t l
k;l + qk = 0 is the first Cauchy equation of motion

and

p̃k ≡ tkpn p dynamic boundary condition on Ap

can be obtained from the first and secound terms of the right hand side of the Eq. (7).

3. The Equation of Motion on the Stress Rate Field

The Eq. (7) refers to continue and its any part. Otherwise, on the basis of all that
has been mentioned above, the Euler-Lagrange equation given below is obtained
after the suitable mathematical transformation:

t̊ kp
;p + tqpvk

;qp + q̆k = 0 (8)

supposing that the Cauchy equations of motion are satisfied. Here t̊ kp denotes the
Truesdell rate of Cauchy’s stress tensor, that is,

t̊ kp ≡ ṫ kp − tkqv
p
;q − tqpvk

;q + tkpvs
;s

and
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q̆k = q̇k + qkvs
;s − qsvk

;s

or when q̄k is the body force density
and

qk ≡ q̄k − ρv̇k then q̆k = ˙̄qk + qkvs
;s − qsvk

;s − ρ(v̈k − v̇svk
;s),

where ρ is the mass density and it satisfies the continuity equation.
The (8) is the equation of motion on the stress rate field (7), [8, 9, 10]. The

boundary condition on Ap is t̊ kpn p + tqpn pv
k
;q = 0.

4. Conclusion

The principle of virtual work is extended to continue, which performs finite defor-
mation. The deformation depends on time, too. The equation of motion for stress
rate is derived from the generalized principle.
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