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Abstract

Nonlinearity caused by the application of digital control may lead to chaotic behaviour. There
are several cases when these chaotic oscillations disappear suddenly. This phenomenon is referred
to as transient chaos. In the present paper, we analyse a simple model of a digitally controlled
mechanical system which may perform transient chaotic vibrations, and propose a new procedure for
the estimation of the duration of these transients. The relation between the mean lifetime and the
so-called escape rate is also examined. As a result, a new formula is introduced, whose reliability is
validated with the help of the new lifetime estimation method.
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1. Introduction

Parallel with the fast development of computer technology, more and more com-
mercial products are operated using digital control loops.

Unfortunately, engineers are usually not aware of the effects of the discretiza-
tion in time (sampling) and the discretization of the measured data (round-off error),
however, these effects may lead to chaotic behaviour [1, 2]. In several cases, chaotic
oscillations disappear suddenly – this phenomenon is referred to as transient chaos
[3, 4]. The occurrence of transient chaotic behaviour increases the control time
since the control is not effective until the system reaches its steady state. Moreover,
control time in non-chaotic cases is usually negligible compared to the lifetime of
chaotic transients.

The transient chaotic behaviour cannot be described as a motion on a strange
attractor. There is another invariant set in the phase-space of transient chaotic
systems, responsible for the irregular vibrations, the so-called chaotic repeller or
chaotic saddle [3]. The chaotic repeller can be considered as a dense but measure
zero set of repelling (hyperbolic) points, which form a strange structure, a ‘maze’
for the solution curves. If a solution arrives at the neighbourhood of the repeller,
a very long time might be needed for it to leave. The observed law, governing the
escape of the solutions from the neighbourhood of the repeller is quite simple: the
probability that a solution has not escaped yet decays exponentially with time in an
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asymptotic sense. Thus, if we start solutions from N0 different initial points, the
number of solutions remaining in the neighbourhood of the repeller until time t is

N(t) = N0e−κt , (1)

where the exponent κ is called escape rate.
In the present paper, we analyse a simple mathematical model of a digitally

controlled mechanical system. This system will be introduced in the next section,
and the expected duration of a – non-chaotic – transient process will be calculated.
Section 3 is devoted to the elucidation of the relation between the escape rate and
the mean lifetime of chaotic transients, while our new lifetime estimation method
will be presented in Section 4.

2. Mechanical and Mathematical Models

The mechanical model of a polishing machine can be seen in Fig.1. It consists of a
revolving cylinder sliding on the rough surface of a fixed block. The velocity of the
shaft is denoted by v, while the circumferential velocity of the polishing tool equals
v0 = Rω0. Besides the dry friction force C , a mixed dry-viscous friction force acts
on the polishing tool of mass m. This mixed friction force acting between the fixed
block and the cylinder depends on the velocity difference v0 − v.

µ(v0 − v)

µ(v0 − v)
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v0 − v
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Fig. 1. The mechanical model of the computer-controlled polishing system

At low relative speeds vrel = v0 − v, the combined dry and viscous friction
force acting on the cylinder is locally decreasing as the relative velocity v0 − v
increases (see Fig. 1). In case of v = 0, this friction force equals mgµ(v0).
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The shaft of the polishing tool is driven by a DC motor, which exerts a control
force Q = −mgµ(v0)− Dv. D denotes a differential gain, with which the strength
of the control can be tuned. The linearized, first order equation of motion of the
system is

mv̇ + mgµ′(v0)v = mgµ(v0) − C sgn(v)−mgµ(v0) − Dv︸ ︷︷ ︸
Q

. (2)

Since the computer samples the velocity with sampling time τ , and the velocity
measurement has a finite resolution h, the solution of this equation can be expressed
by the following piecewise linear mapping:

Fm : x j+1 =
{

ax j − b Int(x j ) − S if S/a < x j ,
0 if −S/a ≤ x j ≤ S/a, and

ax j − b Int(x j ) + S if x j < −S/a,
(3)

where

x j = v( j)/h, a = e f gτ > 1,

b = D

f mg

(
e f gτ − 1

)
> 0, S = (

e f gτ − 1
) C

f mgh
> 0,

f = |µ′(v0)| = −µ′(v0) > 0,

and v( j) denotes the velocity at the jth sampling instant. This map is the generalized
version of the so-called micro-chaos map [1]. The details of the derivation of map
(3) can be found in [5].

Since there is an attracting domain [−S/a, S/a] in the domain of definition of
the map (3), the existence of transient chaos is expected in this case. This attracting
domain near the origin corresponds to the static dry friction that captures the shaft
at low velocities.

In Fig. 2, the graph of the map (3) can be seen for the parameters a = 3/2,
b = 6/5, and S = 2/15 (thick lines), with a quite long trajectory (thin lines),
eventually arriving at the domain of attraction of the origin. It can be seen that there
is a sub-interval I0 which is directly reachable from the right by a trajectory – see
dashed lines in the figure. If a solution arrives at I0, the transient chaotic behaviour
is over. The size of I0 can be given as

|I0| = a
S

a − 1
− (a − b). (4)

We introduce |I0| to be a new parameter instead of S, because it characterizes the
system better than the friction parameter S, and it is uniquely related to that.

It is clearly seen in Fig. 2 that there is a domain which is densely occupied by
the trajectory. The corresponding interval Irep = (x∗, a − S) contains the repeller
of the system. Since the fixed point x∗ can be given as

x∗ = S

a − 1
= a − b + I0

a
, (5)
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Fig. 2. A long trajectory at a = 1.5, b = 1.2, and |I0| = 0.1

the size of the repeller is |Irep| = b − |I0|.
Fig. 3 presents the structure of the domain of definition of map (3). The

number of steps needed to escape – i.e. to reach the interval I0 – is naturally known
in case of the pre-images of I0. Some of these numbers are shown in the figure.

I0 has only one first pre-image, which is denoted by I1 in Fig. 3. I1 has two
pre-images, one in the interval A – it is denoted by I2 – and another one in the
interval B. As it is shown in the figure, two steps are needed to escape from these
intervals. I2 has two pre-images as well, one in A and another one in B. The
structure of A, B, and C can partially be explored this way. All three intervals
contain an infinity of sub-intervals of size |I0|/a j , from where j steps are necessary
to escape. These intervals and numbers will be referred to as fundamental escape
intervals and kickout numbers, respectively. The intervals between the fundamental
escape intervals are denoted by shaded columns in the figure and will be referred
to as fundamental fractal intervals.

If we search for the images of fundamental fractal intervals, we find that
sooner or later all of them are mapped onto the fundamental fractal interval denoted
by F . On the other hand, the pre-images of almost all sub-intervals of B are found
in F . Thus, F has the property of self-similarity. So, F contains an infinity of
fractal and escape sub-intervals, similarly to intervals A, B, and C .

Since all fractal intervals are mapped onto F , this happens with the fractal
sub-intervals of F , too. Thus, these intervals are stretched, and some parts of them
are mapped onto the escape sub-intervals of F . By exploiting the self-similarity
of F , the overall size of the intervals that are mapped onto escape sub-intervals of
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Fig. 3. The structure of the domain of definition at a = 1.5, b = 1.3, and |I 0| = 0.25

F can be calculated, weighted by the appropriate kickout numbers. This way, the
mean kickout number – the mean number of steps necessary to escape – can be
calculated. This procedure is usually very complex since the eventually escaping
intervals are typically mapped into fractal sub-intervals of F before being mapped
onto an escape interval [5].

Now, consider one of the most simple cases, namely, when the fundamental
fractal intervals shrink to discrete points. The size of fundamental fractal intervals
is |Fj | = |F |/a j , where |F | = (ab − a|I0| − b)/a2 denotes the size of the greatest
fractal interval F . |F | = 0 fulfils at the critical value |I0|crit = b − b/a. Over this
value, the pre-images of the fixed point x∗ form the borders between the fundamental
escape intervals, and the behaviour of the solutions cannot be referred to as chaotic.
For example, at a = 1.5, and b = 1.3, |I0|crit = 0.433̇. The structure of the domain
of definition is shown in Fig. 4, at |I0| = 0.5.

In this case, Irep = (x∗, a − S) = (0.466̇, 1.266̇). The size of the interval,
from which one step is necessary to escape is |I1| = a − S − 1 = 0.266̇, while the
size of the other escape intervals can be given as |I1|/ai . The mean kickout number
can be obtained by calculating the corresponding weighted sum:

Km = |I1|
∑∞

i=1 ia1−i

|Irep| = a

a − 1
= 3, (6)

thus, the result does not depend on |I0| or b.
In this case, the behaviour is not chaotic, so the escape rate cannot be defined.

However, as it can be seen in Fig. 4, the sizes of the pre-images of I1 decrease
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Fig. 4. The structure of the domain of definition at a = 1.5, b = 1.3, and |I 0| = 0.5

exponentially. Thus, a local escape rate κloc can be introduced in the neighbour-
hood of the fixed point x∗. Note that the escape rate is usually considered as the
measure of the global instability of the system, while local instability is measured
by the Lyapunov exponents. Consequently, the local escape rate is equivalent to
the Lyapunov exponent. However, the introduction of this new quantity enables us
to find a corresponding escape rate to the mean kickout number (6). This way, the
exact relation between these quantities can be found.

3. Relation Between the Escape Rate and the Mean Lifetime

The usual escape rate calculations are based on the assumption that the probability
that a solution has not escaped yet from a set � containing the repeller, decays
exponentially with time (see (1)). The reciprocal of the exponent κ is usually
considered to be the duration of the transient chaotic phenomenon [3, 4]. This
approach has several deficiencies:

• First, the exponential decay is only asymptotically fulfilled. For example,
Fig. 5 shows the results of a numerical examination of the generalized micro-
chaos map at parameters a = 1.5, b = 1.2, and |I0| = 0.17 (see Eq. (3)).
We started 150000 iterations from the interval Irep containing the repeller,
and detected the number of solutions with certain kickout numbers. As a
comparison, an exponentially decreasing curve is also presented, showing
the asymptotic nature of the exponential decay. Although the convergence is
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usually quite fast – especially in case of great escape rates –, this systematic
error cannot always be neglected.
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Fig. 5. The exponential decay is only asymptotically fulfilled

• Second, in case of maps, the mean lifetime of transient chaotic behaviour
is not equal to the reciprocal of the escape rate. Even in the hypothetical
case of exact exponential decay, a different relation is fulfilled between these
quantities. In case of continuous flows with exponential rate of escape, the
mean lifetime tm can be calculated according to (1):

tm =
∫ ∞

0 t N(t) dt∫ ∞
0 N(t) dt

= N0
∫ ∞

0 te−κt dt

N0
∫ ∞

0 e−κt dt
= 1

κ
. (7)

This result corresponds to the usually used relation. However, in case of
maps, we obtain another expression for the mean number of iteration steps
Km necessary to escape. In case of exponential escape not only the number
Nn of solutions remaining in the neighbourhood of the repeller decays expo-
nentially, but also the number of escaping trajectories. Since Nn = Nn−1 e−κ ,
the number of solutions escaping in the nth step is

Nn−1 − Nn = Nn−1
(
1 − e−κ

) = N0 e−κ(n−1)
(
1 − e−κ

) = N0 (eκ − 1) e−κn.
(8)

Thus, the so-called mean kickout number Km can be given as:

Km =
∑∞

n=1 nN0 (eκ − 1) e−κn∑∞
n=1 N0 (eκ − 1) e−κn

=
∑∞

n=1 ne−κn∑∞
n=1 e−κn

= 1

1 − e−κ
. (9)
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Note that the sums in the numerator and in the denominator are the upper
Darboux sums of the corresponding intergrals in (7). In case of small escape
rate and long lifetime, 1/(1 − e−κ ) ≈ 1/κ , indeed. However, in this case,
the convergence to the so-called conditionally invariant distribution [3, 4] is
slower, which means that the exponential decay of the escape probability is
fulfilled only after a significantly long time.

• Third, the calculation of the escape rate provides a value for the mean lifetime
of the motion in the neighbourhood of the repeller. However, if the repeller
and the set of possible initial conditions do not coincide, another calculation
has also to be made to estimate the time needed by the trajectories to reach
the repeller.

• Fourth, in some cases, it is not easy to verify whether a certain system exhibits
chaotic behaviour, or just another type of complex motion. The methods pub-
lished in the literature – except for the direct lifetime estimation – exploit the
fact that the trajectories are chaotic, thus their results may be questionable
when the chaoticity of the system is not proved. In several cases, the hy-
perbolicity of the system is also assumed. In case of maps, it means that
the eigenvalues of the map must be strictly bounded away from 1. However,
physical systems are usually non-hyperbolic, and the escape is not exponen-
tial in such cases but follows a power law, instead [4].

4. Lifetime Estimation

The analytical calculation of the mean lifetime is usually very complex in case of the
micro-chaos map. We propose another procedure in this section for the estimation
of the mean kickout number. This method is based on Pesin’s identity [3]:

κ = (1 − D1)λ, (10)

where λ is the Lyapunov exponent and D1 denotes the information dimension of
the repeller.

In the case examined in Section 2, we considered only the neighbourhood of
the fixed point. Thus, a local version of (10) must be used:

κloc = (1 − D1)λ. (11)

In this case, the Lyapunov exponent can be calculated as the logarithm of the slope
of the map: λ = log(a). Since the Lyapunov exponent is constant in the domain
of definition, the dimension D1 is equal to the fractal dimension D0 [3]. Thus,
according to (9) and (11), the fractal dimension can be considered as the measure
of the mean lifetime – and consequently – the control time.

In the example, there is a countable infinity of measure zero ‘fractal’ intervals,
thus, the fractal dimension of the considered domain is zero, too: D0 = 0. By
substituting this value into Eq. (11), we obtain:

κloc = (1 − D0) log(a) = log(a). (12)
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Using Eq. (9), the mean kickout number can be calculated as

Km = 1

1 − e− log(a)
= a

a − 1
. (13)

So, we obtained the result of the exact elementary calculation (6), again. This way,
the reliability of relation (9) is verified.

Note that the above described method can be extended to other, not so trivial
cases, too. As we have already mentioned in Section 2, each fractal interval contains
an infinity of smaller copies of itself. Thus, they have a multi-scale fractal structure
with the scaling factors rj = Ca− j , where a is the slope of the map and C is a
coefficient depending on a, b, and |I0|. The fractal dimension D0 of multi-scale
fractals can be calculated by solving the equation

N∑
j=0

r D0
j =

∞∑
j=0

C D0a− j D0 = 1, (14)

where N+1 is the number of different scales [6]. By finding appropriate estimations
for the coefficient C , the fractal dimension and the kickout number could also be
estimated.

The search for satisfactory estimations of this coefficient plays a central role
in our recent research work.
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