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Abstract

Chatter prediction for 2 degree of freedom (DOF) milling model is presented. The workpiece is
assumed to be flexible and the tool to be stiff. Non-linear cutting force model is used, and the
linearized equation of motion is derived. Stability charts are constructed for different stiffness values
in the directions x and y. The charts for the 1 DOF models associated with the x and the y directions
are also given. It is shown that the 2-DOF case can not be given via the pure overlaying of the charts
of the two single DOF cases.
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1. Introduction

The rapid development of machining technology during the past decade, and the
commercialization of reliable high-speed machining systems have driven the need
for thorough dynamical investigation of high-speed cutting processes. One im-
portant phenomenon that limits the productivity of machining is the arising self-
excited vibration, called regenerative machine tool chatter. The work of TLUSTY
et al. (1962), TOBIAS (1965) and KUDINOV (1955) led to the development of the
‘stability lobe diagram’ that plots the boundary between stable and unstable cuts
as a function of spindle speed and depth of cut.

Analytical prediction of chatter in milling processes is extremely difficult.
The accurate modelling of the regenerative effect leads to a delay-differential equa-
tion (DDE) with a corresponding infinite dimensional state space (STÉPÁN, 1989).
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Due to the periodic excitation of rotating teeth of the miller, the governing equation
of milling is a DDE with time-periodic coefficients. Closed form stability condi-
tions can not be given for the general milling case. Usually, numerical simulations
(SMITH and TLUSTY, 1991, ZHAO and BALACHANDRAN, 2001, PEIGNÉ et al.,
2003) and different analytical techniques (ALTINTAS et al., 1999, TIAN and HUT-
TON, 2001, DAVIES et al., 2002, INSPERGER et al., 2003a, MANN et al., 2003a,
2003b, BAYLY et al., 2003, CORPUS and ENDRES, 2003, SZALAI and STÉPÁN,
2003, WANG et al., 2003, FAASSEN et al. 2003) are used to derive stability charts.

Vibrations arise due to the flexible parts in the system, like tool, tool holder,
workpiece, etc. For some simple cases, when a well defined first mode is dominant,
like milling a thin walled workpiece with a stiff miller, the 1 degree of freedom
(DOF) assumption is satisfactory. In this case the stability chart consists of an infi-
nite series of stability lobes that are associated to either secondary Hopf or period
doubling (flip) bifurcation. The analysis of the vibration frequencies (INSPERGER
et al., 2003b) and the chatter signal (GRADIŠEK et al., 2002) resulted in a deep
understanding of the 1 DOF case.

Usually, there is no well defined dominant mode of the tool-workpiece sys-
tem, and the process can only be modelled as a multi-DOF system. An example is
when the tool is the most flexible part, and it is modelled as a cantilever beam (KI-
VANC and BUDAK, 2003). In this case a 2 DOF model is considered with the same
(or almost same) parameters in the x and y directions and diagonal modal matri-
ces arise in the equation of motion. However, if the tool is not symmetric, and the
modal parameters are different in the two principal directions, then the correspond-
ing modal matrices in the equation of motion are not diagonal, but time-periodic
due to the rotation of the tool. If the tool is stiff and the workpiece is flexible with
two dominant modes, then the 2 DOF model can also be used. In this case, the
modal parameters may also differ for the two modes. For these cases the stability
charts are more complex than those of the 1 DOF case, since both the x and y
directions can be associated to an infinite series of stability lobes, and the resultant
stability chart is a complex combination of these two sets of lobes.

If further higher modes also take important role in the system dynamics, then
the structure of the stability charts are even more complicated. For these cases the
estimation of the modal parameters needs a sophisticated modal analysis of the
complex structure of the tool, the tool-holder and the workpiece (SCHMITZ et al.,
2001, ESTERLING et al., 2003, YOUNG and HELVEY, 2003).

In the present study a 2 DOF model is considered with a stiff tool and a
flexible workpiece. The non-linear cutting force model is used, and the linearized
equation of motion is derived. Stability charts are constructed for different stiffness
values in the directions x and y. The charts for the 1 DOF models assigned to the
x and the y directions are also given. It is shown that the 2 DOF case can not be
given by the pure overlaying of the lobes of the two 1 DOF cases.
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2. Mechanical Model

The 2 DOF mechanical model of milling is shown in Fig, 1. The workpiece is
assumed to be flexible relative to the milling table with dominant modes parallel
(x) and perpendicular (y) to the feed. The modal mass of the workpiece is m, the
stiffness and damping are kx , cx , ky and cy for both x and y directions. The linear
feed motion of the milling table is described by vt . The equation of motion reads

mẍ(t) + cx ẋ(t) + kx x(t) = Fx(t) , (1)
mÿ(t) + cy ẏ(t) + ky y(t) = Fy(t) . (2)

Here x and y denote the position of the workpiece relative to the milling table. The
cutting forces Fx(t) and Fy(t) are time-dependent due to the rotation of the tool.
Note that the case investigated here is a special one. Usually, the dominant modes
are neither parallel nor perpendicular to the feed, and cross modal terms are arising
in the equation.

Fig. 1. Mechanical model

The helix angle is also included in the model. The cutter is modelled as a
stack of infinitesimal (differential) disk elements. A differential element along the
depth of cut is shown in Fig. 2. The tangential and the normal forces acting on this
differential element are

dFj t(t, z) = g(ϕ j (t, z))Kt ( f (t, z))xF dz , (3)
dFj n(t, z) = g(ϕ j (t, z))Kn( f (t, z))xF dz , (4)
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where Kt and Kn are the tangential and the normal cutting coefficients, respec-
tively, f (t, z) is the chip thickness and the exponent xF is a constant (xF = 0.8
is a typical value for this parameter). The angular position of the cutting edge j
corresponding to the investigated differential element of the tool is

ϕ j (t, z) = 2πΩ

60
t − z tan γ

R
+ j

2π

N
, (5)

where Ω is the spindle speed in [rpm], z denotes the axial direction, γ is the helix
angle (see Fig. 2), R is the radius of the tool and N is the number of teeth. The
function gj (t) is a screen function, it is equal to 1, if the j th tooth is active, and it
is 0, if not:

g(ϕ j (t, z)) =
{

1 if ϕenter < ϕ j (t, z) < ϕexit
0 otherwise , (6)

where ϕenter and ϕexit are the angles where the teeth enter and exit the cut, respec-
tively.

Fig. 2. Differential element of the tool modelling the helix angle

The x and y components of the differential cutting force are given as (see
Fig. 3)

dFj x(t, z) = dFj t (t, z) cos ϕ j (t, z) + dFj n(t, z) sin ϕ j (t, z) , (7)
dFj y(t, z) = − dFj t (t, z) sin ϕ j (t, z) + dFj n(t, z) cos ϕ j (t, z) . (8)

If vτ � R, where vτ is the feed per tooth, then the chip thickness can be
expressed according to Fig. 4 as

f (ϕ j (t, z)) = A sin ϕ j (t, z) + B cos ϕ j (t, z)
= (vτ + x(t − τ) − x(t)) sin ϕ j (t, z) + (y(t − τ) − y(t)) cos ϕ j (t, z) , (9)

where τ = 60/(NΩ) is the tooth passing period.
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Fig. 3. Cutting force model

Fig. 4. Chip thickness model

The cutting force acting on tooth j is obtained by integration of Eqs. (7) and
(8) along the axial direction:

Fj x(t) =
∫ w

0
dFj,x(t, z)

=
∫ w

0
g(ϕ j (t, z))( f (t, z))xF

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)
dz , (10)

Fj y(t) =
∫ w

0
dFj,y(t, z)

=
∫ w

0
g(ϕ j (t, z))( f (t, z))xF

(−Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

dz ,

(11)

where w is the axial depth of cut. The resultant forces are the sum of the forces
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acting on the teeth:

Fx(t) =
N∑

j=1

Fj x(t) , and Fy(t) =
N∑

j=1

Fj y(t). (12)

The equations of motion can be written in the forms:

mẍ(t) + cx ẋ(t) + kx x(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)

×
((

vτ + x(t − τ) − x(t)
)

sin ϕ j (t, z)

+(
y(t − τ) − y(t)

)
cos ϕ j (t, z)

)xF

dz , (13)

mÿ(t) + cy ẏ(t) + ky y(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

×
((

vτ + x(t − τ) − x(t)
)

sin ϕ j (t, z)

+(
y(t − τ) − y(t)

)
cos ϕ j (t, z)

)xF

dz . (14)

Now, the motion of the workpiece is assumed to be in the form:

x(t) = xp(t) + ξ(t) , (15)
y(t) = yp(t) + η(t) , (16)

where xp(t + τ) = xp and yp(t + τ) = yp(t) are periodic functions, ξ(t) and η(t)
are perturbations associated with machine tool chatter in the x and the y directions,
respectively. Substitution of Eqs. (15) and (16) into Eqs. (13) and (14) results in

mẍp(t) + cx ẋ p(t) + kx xp(t) + mξ̈ (t) + cx ξ̇ (t) + kxξ(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)

×
((

vτ + ξ(t − τ) − ξ(t)
)

sin ϕ j (t, z)

+(
η(t − τ) − η(t)

)
cos ϕ j (t, z)

)xF

dz , (17)
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mÿp(t) + cy ẏp(t) + ky yp(t) + mη̈(t) + cy η̇(t) + kyη(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

×
((

vτ + ξ(t − τ) − ξ(t)
)

sin ϕ j (t, z)

+(
η(t − τ) − η(t)

)
cos ϕ j (t, z)

)xF

dz . (18)

For the ideal case, when no chatter arises, the motion is described by x(t) = xp(t)
and y(t) = yp(t), and the equations of motion are

mẍp(t) + cx ẋ p(t) + kx xp(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z)

+Kn sin ϕ j (t, z)
)((

vτ
)

sin ϕ j (t, z)
)xF

dz , (19)

mÿp(t) + cy ẏp(t) + ky yp(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z)

+Kn cos ϕ j (t, z)
)((

vτ
)

sin ϕ j (t, z)
)xF

dz . (20)

For linear stability analysis, the variational system of Eqs. (13) and (14) is de-
termined for the periodic motion

(
xp(t), yp(t)

)
. Expand the non-linear term in

Eqs. (17) and (18) into Taylor series with respect to
(
ξ(t), η(t)

)
, and neglect the

higher order terms to get

mẍp(t) + cx ẋ p(t) + kx xp(t) + mξ̈ (t) + cx ξ̇ (t) + kxξ(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)

×
((

vτ sin ϕ j (t, z)
)xF +

(
xF

(
vτ sin ϕ j (t, z)

)xF−1
sin ϕ j (t, z)

)

×(
ξ(t − τ) − ξ(t)

) +
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
cos ϕ j (t, z)

)

×(
η(t − τ) − η(t)

))
dz , (21)
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mÿp(t) + cy ẏp(t) + ky yp(t) + mη̈(t) + cy η̇(t) + kyη(t)

=
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

×
((

vτ sin ϕ j (t, z)
)xF +

(
xF

(
vτ sin ϕ j (t, z)

)xF −1
sin ϕ j (t, z)

)

×(
ξ(t − τ) − ξ(t)

) +
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
cos ϕ j (t, z)

)

×(
η(t − τ) − η(t)

))
dz . (22)

Using Eqs. (19), (20) and (21), (22), a linear periodic DDE is obtained for
(
ξ(t), η(t)

)
as

mξ̈ (t) + cx ξ̇ (t) + kxξ(t)
= hxx(t)

(
ξ(t − τ) − ξ(t)

) + hxy(t)
(
η(t − τ) − η(t)

)
, (23)

mη̈(t) + cy η̇(t) + kyη(t)

= hyx(t)
(
ξ(t − τ) − ξ(t)

) + hyy(t)
(
η(t − τ) − η(t)

)
, (24)

where

hxx(t) =
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)

×
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
sin ϕ j (t, z)

)
dz , (25)

hxy(t) =
N∑

j=1

∫ w

0
g(ϕ j (t, z))

(
Kt cos ϕ j (t, z) + Kn sin ϕ j (t, z)

)

×
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
cos ϕ j (t, z)

)
dz , (26)

hyx(t) =
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

×
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
sin ϕ j (t, z)

)
dz , (27)

hyy(t) =
N∑

j=1

∫ w

0
g(ϕ j (t, z))

( − Kt sin ϕ j (t, z) + Kn cos ϕ j (t, z)
)

×
(

xF

(
vτ sin ϕ j (t, z)

)xF−1
cos ϕ j (t, z)

)
dz . (28)
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Finally, Eqs. (23) and (24) are put in the following vector form:
(

m 0
0 m

) (
ξ̈ (t)
η̈(t)

)
+

(
cx 0
0 cy

) (
ξ̇ (t)
η̇(t)

)
+

(
kx + hxx(t) hxy(t)

hyx(t) ky + hyy(t)

)(
ξ(t)
η(t)

)

=
(

hxx(t) hxy(t)
hyx(t) hyy(t)

) (
ξ(t − τ)
η(t − τ)

)
. (29)

3. Stability Charts

The stability analysis was carried out by the semi-discretization method (INSPER-
GER and STÉPÁN, 2002). Stability charts are determined for the parameters sum-
marized in Table 1.

Table 1. Parameters used for stability chart construction

tool diameter D = 2R=12.25 [mm]
number of teeth N=2
helix angle γ =25◦
cutting force exponent x F=0.75
feed per tooth vτ=0.1 [mm]
tangential cutting coefficient Kt=6e7 [N/m1+xF ]
normal cutting coefficient Kn=2e7 [N/m1+xF ]
modal mass m=0.1 [mm]
damping in direction x cx=6 [Ns/m]
damping in direction y cy=6 [Ns/m]

The system is investigated with different stiffness values in both x and y
directions. Table 2 shows the stiffness values and the corresponding natural fre-
quencies of the investigated cases. Case (b) corresponds to a symmetric tool, while
for case (a) and (c) fy = 2 fx and fx = 2 fy , respectively.

Table 2. Stiffness parameters and the associated natural frequencies used for stability chart
construction

case kx ky fx fy

(a) 3 × 106 N/m 12 × 106 N/m 329.48 Hz 658.96 Hz
(b) 3 × 106 N/m 3 × 106 N/m 329.48 Hz 329.48 Hz
(c) 12 × 106 N/m 3 × 106 N/m 658.96 Hz 329.48 Hz
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Fig. 5. Stability charts for 10% radial immersion up-milling
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Fig. 6. Stability charts for 10% radial immersion down-milling
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Fig. 7. Stability charts for full immersion milling

The resulting stability charts for 10% radial immersion up- and down-milling
and for full immersion milling are shown in Figs. 5, 6 and 7. Cases (a), (b) and (c)
refer to the parameters given in Table2. In the charts titled as x-lobes, the stability
boundaries of a 1 DOF case with flexible x direction can be seen (dashed lines).
The charts titled as y-lobes show the stability boundaries of a 1 DOF case with
flexible y direction (dash-dotted lines). These 1 DOF cases are also considered in
MANN et al. (2003c). The charts titled as xy-lobes present the stability bound-
aries of the 2 DOF case with flexible x and y directions (continuous lines). For
comparison, the 1 DOF cases are also presented in the xy-lobe plots by dashed and
dash-dotted lines.

4. Conclusions

As it can be seen in Figs. 5, 6 and 7, the stability behaviour depends strongly on
the flexibility of both x and y directions. Since the x and y modes are coupled
through the cutting force, the 2 DOF stability boundaries can not be given by a
pure overlaying of the x- and y-lobes of the 1 DOF cases, as it can also be seen
in the plots of xy-lobes in Figs. 5, 6 and 7. However, for the cases (a) and (c),
when the natural frequencies in the x and y directions are different, some parts of
the xy-lobes seem to be the same as either the x- or the y-lobes. For case (b) the
difference between the 1 DOF cases and the 2 DOF case is more essential. The
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explanation is that cases (a) and (c) are more decoupled than case (b).
As the difference between the stiffness values in the x and y direction is

increased, and the system gets more and more decoupled, the stability charts con-
verge to those of the 1 DOF cases of either the x or the y flexibility.
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