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Abstract

The switching speed of a micromachined switch is calculated by using elastic beam as well as thin
plate models. The effect of pre-tightening to achieve higher eigenfrequency of the deflected member
is also investigated. A performance parameter is introduced to describe the functioning of the switch
in order to take into account not only fast switching, but also the necessary pull-in voltage for
the device. Three switch-configurations are analyzed by finite elements and optimum geometrical
parameters were searched.
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1. Introduction

Sensors, actuators and other micro-electromechanical systems (MEMS) can be
found in almost all modern engineering machines like cars, multimedia-devices,
measuring instruments, etc. Micromachined switches are mostly used in radio
frequency systems, e.g. mobile phones, phase shifters, smart antennas, etc. Low
power consumption and ability to be integrated by other electronic elements make
them an attractive alternative to conventional solid-state switches.

In many cases [3, 8, 11, 12, 15] the switch contains an electrostatically actuated
membrane, called bridge, deposited on a fixed substrate and a centre conductor
facing it. The membrane bridge and the center conductor form a capacitor. During
the functioning of the switch this membrane deflects due to electrostatic forces.
When the membrane bridge is released, it starts to vibrate. The switching speed
(time) is estimated to be proportional to the reciprocal of one-quarter of the lowest
eigenfrequency of the membrane. The other important characteristics of a capacitive
micro-switch is the critical (maximum) pull-in voltage. A too large voltage across
the open switch can fail the switch by either deflecting the membrane and closing
the switch, or by causing an electrical breakdown of the gap between the capacitors.

Much efforts are being made to improve the functioning of the switches by in-
creasing their switching speed. Low-cost semi-conductor materials, the productive
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bulk micromachining technology, design of sophisticated electrical circuits promote
the development of micro-switches. Since the device consists of not only electrical,
but also mechanical parts, a proper mechanical model is inevitable to design the
switch correctly.

The mechanical design of the switch is often carried out by a lumped mass-
spring model [2, 3, 10] or by using a simplified one-dimensional beam model
[6, 7, 9]. The argument of these models is that the membrane is rectangular and
the electrical field between the capacitors is homogeneous, and consequently, the
thin elastic membrane deflects rigidly or at least like an elastic beam. Such simple
models can be accepted with some criticism. Even for the simplest, rectangular
shape of the bridge the beam model is adequate for narrow plates, only. In the
case of larger width the cross-sections do not remain unchanged under bending,
the boundaries deflect differently, as the middle of the plate (fringing) [14]. Con-
sequently, if one tries to consider shapes other than a rectangle, a two-dimensional
plate model is required. In such cases reliable mechanical response can be obtained
by only numerical simulation [12, 13].

This paper presents one- and two dimensional models. In the latter case
pre-tightening, i.e. in-plane tension of the bridge was also taken into account. In
order to get fast switching, the lowest eigenfrequency must be increased. Keeping
constant geometrical parameters, it can be achieved by appropriate in-plane forces.
The bridge cannot, however, be unbounded stiff. In the case of a stiff membrane
large electrostatic force is needed for switching-off, and therefore, the necessary
pull-in voltage must also be increased. This leads to more electric consumption,
which worsens the performance of the device.

A new performance factor is also introduced taking into account fast switch-
ing, as well as acceptable critical pull-in voltage. Using the finite element method,
optimal geometrical parameters have been searched and found in the case of two,
not rectangular, membrane-shapes.

2. One-Dimensional Model

The schematic view of the micro-switch is shown in Fig.1. The membrane bridge
is bonded at the ends on a substrate. It is suspended over a dielectric film deposited
on the center conductor. Applying an electrostatic potential between the bridge and
the center conductor, the electrostatic force pulls the bridge downwards (pull-in).
Because of the elastic behaviour, the bridge starts to vibrate after it has been released
(switch-on).

The substrate and rigidly attached center conductor and the ground plates are
fixed. The only moving part is the membrane bridge. The schematic cross-sectional
view of the structure is shown in Fig. 2.

For an accurate evaluation of the switching speed a nonlinear dynamic model
capturing electrostatic, residual stress, inertia, air-damping, Van der Waals force,
contact and impact would be essential. As a simplified analytical approximation,
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Fig. 1. Capacitive micromachined switch

Fig. 2. Cross-sectional view of the micro-switch

the switching speed is estimated by using the first natural frequency of the free,
undamped one-dimensional model. The equation of motion is [7]

ρ A
∂2w

∂t2
+ Ẽ I

∂4w

∂x4
− F

∂2w

∂x2
= 0, (1)

where w = w(t , x) is the deflection function, ρ is the density, A is the area of cross-
section, Ẽ = E/(1 − ν2) is the equivalent elastic modulus due to plate bending
[12] and F is the applied in-plane force. The response function is searched in the
form of

w(t, x) = χ(t)X (x), (2)

where X (x) is the first mode shape and χ(t) is obtained by solving the following
equation:

Mχ̈ + Kχ = 0. (3)

The coefficients in Eq. (3) are defined by

M =
L∫

0

ρbh X2(x)dx , and K =
L∫

0

I Ẽ X (iv)(x)X (x)dx−
L∫

0

F X ′′(x)X (x)dx .

(4)
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The bridge membrane is considered as a beam fixed at both ends, therefore the
boundary conditions are as follows:

X (± L

2
) = 0, X ′(± L

2
) = 0. (5)

The first natural frequency ν1 is determined by solving the transcendent character-
istic equation

2(1 − cosh λ1L cos λ2L) + (
λ1

λ2
− λ2

λ1
) sinh λ1L sin λ2L = 0, (6)

where
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√

a + √
a2 + 4e

2
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√
−a + √

a2 + 4e

2
, a = F

Ẽ I
, e = α2

1
ρbh

Ẽ I
(7)

and
ν1 = α1

2π
. (8)

Eq. (6) can be solved by using a symbolic algebra program, e.g. Mathematica or
Maple. The switch-on time is then estimated simply by 1/(4ν1).

3. Two-Dimensional Model

Besides the simplest rectangular shape of the membrane bridge, slightly modified
geometries have also been investigated. Because of the complicated boundary con-
ditions, no attempt has been made to find an analytical solution. The commercial
finite element package COSMOS/M v2.0 [5] is an appropriate tool for the calcula-
tion of the eigenfrequencies and the displacement field of the system. It contains
also a structural optimization module, by which optimum geometrical parameters
could be searched for.

Fig. 3 shows the three types of membrane-shapes. Hashed regions refer to
the area, where electrostatic forces are risen (width L2 of the center conductor, see
Fig. 2).

The aim is to find best geometrical parameters to achieve large eigenfrequency
but also to lower the critical collapse voltage given by [7]

Vc =
√

8Keff d3
0

27ε0
, (9)

where d0 is the initial distance between bridge and centre conductor, ε0 is the
permittivity of air and Keff is the effective stiffness of the beam defined as

Keff = P

wmax
. (10)
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Fig. 3. Different configurations for the bridge membrane

P is the normal pressure load, wmax is the midpoint deflection of the beam. Good
performance of the device can be achieved if it has a small critical voltage and a
large switching speed. It is seen from Eqs. (9) and (10) that

Vc = const.√
wmax

. (11)

Obviously, large switching speed (small switching time) requires large natural fre-
quency. Consequently, the maximum of the objective function

g = ν1
√

wmax (12)

would lead to an optimal structure.

4. Numerical Example

As a numerical example, a micro-switch with the geometrical and material para-
meters listed in Table 1 has been analyzed.
In cases A and B b1 = b/4 has been chosen. A homogeneous in-plane tension
defined by px = F/bA has been applied. Figs. 4 and 5 show the effect of the
tension on the first eigenfrequency and the mid-point displacement, respectively.
Dashed line refers to the one-dimensional model in Fig. 4. The one-dimensional
model gives a quite good estimate for the rectangular model (case O). The finite
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Table 1.

L [mm] 0.28
b [mm] 0.09
h [mm] 0.0015
L2 [mm] 0.12
ρ [kg/m3] 19300
E [MPa] 76520
ν 0.41

element models consist of 320 four-noded shell element in all the three cases (O,
A and B). It is seen that in-plane forces increase the eigenfrequency, however, it
decreases the maximum displacement.
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Fig. 4. Effect of in-plane tension on the lowest eigenfrequency

Fig. 6 shows the variation of the dimensionless performance parameter (the value
of the objective function divided by 1 kHz·µm) as a function of in-plane tension. It
is seen that the curves are about constant and minor differences that can be detected
under the different structures.
Maximum occurs at px = 0, where g = 128.3 for structure O, g = 126.2 for
structure A and g = 126.5 for structure B. Keeping L , b, L2 and all material
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Fig. 5. Effect of in-plane tension on the maximum displacement

parameters constant, three geometrical parameters have been varied as 0.0001 ≤
h ≤ 0.003 mm, 0.0001 ≤ b1 ≤ b/2, and L2 ≤ h ≤ L . Table 2 shows optimum
parameters found by using the OPTSTAR module of the program COSMOS/M.

Table 2.

A B

h [mm] 0.00115 0.0027
b1 [mm] 0.0171 0.0304
L1 [mm] 0.165 0.160
f1 [kHz] 53.1 69.6
wmax [µm] 7.15 2.95
g [kHz·µm] 142.0 180.8

In both cases gmax is much greater than the initial value. It is obvious from Table2
that structure B has better performance.
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Fig. 6. Effect of in-plane tension on the objective function

5. Conclusions

One- and two-dimensional models can both estimate the eigenfrequency of the
membrane bridge in a capacitive micro-switch. Since the switching time is propor-
tional to the lowest eigenfrequency, fast switching can be achieved by having as
stiff a membrane as possible. Applying in-plane tension the lowest eigenfrequency
can drastically be increased, however, it leads to the increase of the critical pull-in
voltage as well. Introducing a parameter equal to the product of the lowest eigen-
frequency and the square-root of the maximum deflection of the membrane, the
overall performance can be quantified. Using the finite element program package
COSMOS/M, optimum geometrical parameters have been found for two structural
models of the membrane bridge.
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