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Abstract

This paper gives a survey on the computation of the time period of the nonlinear physical pendulum.
The analytical methods, based on the third-order normal forms and on Krylov’s asymptotic technique
are compared to each other. It is shown that these procedures can yield the same result. Though in
case of Krylov’s technique, it depends on the power series expansion of the angular eigenfrequency.
Finally, the analytical formulas are compared to the results of numerical computations.
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1. Introduction

Let us consider the model of a single physical pendulum shown in Fig.1. The mass
of the pendulum is m and its length is l . To be more or less general, the support
can move vertically according to the function r(t), and let M(t) denote a possible
moment excitation. These are taken into consideration till the derivation of the
equation of motion and will be neglected in the main analytical investigations.

The model does not consist of damping. The generalized coordinate q denotes
ϕ angle of the pendulum measured from the vertical direction. With the known base
excitation r(t), this clearly describes the position of the pendulum. Thus, this is a
one-degree-of-freedom system.

2. Deriving the Equation of Motion

The position of the centre of gravity S is given by

rS(t) =
[

l
2 sin ϕ(t)

r(t)− l
2 cos ϕ(t)

]
(1)

and hence, its velocity:

vS = ṙS ≡
[

l
2 ϕ̇ cos ϕ

ṙ(t)+ l
2 ϕ̇ sin ϕ

]
(2)
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Fig. 1. The sketch of the pendulum.

(the formula vS = vA + ϕ̇k × rAS yields the same expression).

The kinetic energy of the pendulum:

T = 1

2
mv2

S + 1

2
�S,zϕ̇

2 ≡ 1

2
m

(
l2

4
ϕ̇2 + ṙ lϕ̇ sin ϕ + ṙ2 + l2

12
ϕ̇2

)
. (3)

The potential energy of the gravitational field (g = −gj):

U = −mg · rS ≡ mg(r − l

2
cos ϕ). (4)

The virtual power of the excitation:

δP = M(t)δϕ̇. (5)

Substituting Eqs. (3)–(5) into the LAGRANGIAN-equation of the second kind

d

dt

∂T
∂ q̇

− ∂T
∂q

+ ∂U
∂q

= ∂

∂δq̇
δP (6)

we obtain:

1

3
ml2ϕ̈ + m

2
(r̈ l sin ϕ + ṙ lϕ̇ cos ϕ)− m

2
ṙ lϕ̇ cos ϕ + mg

l

2
sin ϕ = M(t).

After simplification and rearrangement (with r(t) = r0 sinωt):

ϕ̈ + α2

(
1 − ω2 r0

g
sin ωt

)
sin ϕ = α2 2

mgl
M(t), (7)

where α = √
3g/2l is the angular eigenfrequency of the linearized system. Thus,

the time period of the free oscillation is

T0 = 2π

α
≡ 2π

√
2l

3g
.
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3. The Unexcited Nonlinear System

In the following, we investigate the self-excited vibrations of the nonlinear system
without the additive and parametric external excitations, M(t) and r(t), respec-
tively:

ϕ̈ = −α2 sin ϕ. (8)

After multiplying it with 2ϕ̇, it yields

d

dt
(ϕ̇)2 = −2α2ϕ̇ sin ϕ ≡ 2α2 d

dt
cos ϕ,

which can be integrated and we obtain

ϕ̇ = α
√

2 cos ϕ + C1. (9)

Separating the variables, it can be written as

t =
ϕt∫

0

dϕ

α
√

2 cos ϕ + C1
,

if ϕt = 0 at t = 0.
Applying the variable substitution sin ϕ2 = k sinψ , we get

t =
ψt∫

0

2k cosψdψ

α
√

C1 + 2(1 − 2k2 sin2 ψ)
√

1 − k2 sin2 ψ

≡ 1

α

ψt∫
0

dψ√
1 − k2 sin2 ψ

≡ F(k, ψt)

α

when k = √
2 + C1/2. The last integral expression F(k, ψt ) is the LEGENDRE

normal form of the elliptic integral of the first kind and can be given in closed form
using JACOBI’s elliptic function [1]. Furthermore, C1 = −2 cos ϕT/4 if ϕ̇T/4 = 0
in Eq. (9), i.e. ϕT/4 is the amplitude of the oscillation. Hence,

k = sin
ϕT/4

2
and ψT/4 = π

2

and the time period of the oscillation is

T = 4
F(k, π2 )

α
. (10)
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Fig. 2. Phase portrait of the free vibrations of a nonlinear pendulum.

Investigating the fixed points of Eq. (8), we found infinite many equilibrium points
given by

ϕ	 = kπ, k ∈ {0,±1,±2, . . . }.
However, there are only two physically different equilibrium points: the LIAPUNOV
stable ϕ	 = 0 for the ‘normal’ pendulum (sin ϕ ≈ ϕ yields pure imaginary char-
acteristic roots λ1,2 = ±iα) and the unstable ϕ	 = π for the inverted pendulum
(sin ϕ ≈ −ϕ ⇒ λ1,2 = ±α). The phase portrait in the vicinity of these equilibrium
points can be seen in Fig. 2.

From this point, only the third degree nonlinearities are taken into account
which can be obtained by Taylor series expansion around the equilibrium ϕ = 0:

ϕ̈ + α2ϕ = α2

6
ϕ3 + O(ϕ5). (11)

Considering only the linear part, the equilibrium ϕ = 0 can only be stable in
the LIAPUNOV sense (the solutions for small initial conditions do not diverge, but
do not even converge to the equilibrium, simply saying), since the characteristic
polynomial has a pair of conjugate pure imaginary roots.

However, in the case of large angular displacements, the solutions are only
orbitally stable (the paths stay close together in space, but it is not true ‘in time’),
since the time period of the oscillation depends on the initial conditions.
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3.1. The JORDAN Canonical Form

Let us rewrite Eq. (11) into first order (CAUCHY) form introducing the variables
x1 = ϕ, x2 = ϕ̇:

ẋ =
[

0 1
−α2 0

]
x +

[
0

α2

6 x3
1

]
+ O(x5

1 ). (12)

The A coefficient matrix of the linear part has complex eigenvectors because of the
complex eigenvalues. However, these eigenvectors are conjugates of each other,
since the elements of the coefficient matrix A are real numbers.:

A(u + iv) = iα(u + iv)
⇒ Au = −αv
⇒ Av = αu

⇒ A(u − iv) = −αv − iαu ≡ −iα(u − iv)

and from the so-called generalized eigenvectors u and v, a transformation matrix T
can be built. In our case e.g.:

T = [ u v ] ≡
[

1 0
0 α

]

and its inverse:

T−1 =
[

1 0
0 1

α

]
.

Thus, the x = Ty linear transformation brings Eq. (12) to the following form:

ẏ =
[

0 α
−α 0

]
y +

[
0
α
6 y3

1

]
+ O(y5

1), (13)

or generally
ẏ = Jy + f(y)+ O(‖y‖4). (14)

The vector f(y) contains the nonlinearities of at most the third degree. In details,
its elements have the form as follows:

f(y)

=
[

f (20)
1 y2

1 + f (11)
1 y1y2 + f (02)

1 y2
2 + f (30)

1 y3
1 + f (21)

1 y2
1 y2 + f (12)

1 y1y2
2 + f (03)

1 y3
2

f (20)
2 y2

1 + f (11)
2 y1y2 + f (02)

2 y2
2 + f (30)

2 y3
1 + f (21)

2 y2
1 y2 + f (12)

2 y1y2
2 + f (03)

2 y3
2

]
.
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3.2. The Nonlinear Near-Identity Transformation

The effect of the (at most third-degree) nonlinearity becomes obvious through the
third-order normal form. Hence, we transform Eq. (13) to such a form:

ż = Jz + (z2
1 + z2

2)

[
δ β

−β δ

]
z + O(‖z‖4). (15)

Let us introduce a radius with r2 = ‖z‖2. The previously defined r is proportional
to the amplitude of the oscillation. Thus, we can derive the differential equation
determining r(t) multiplying Eq. (15) with z:

rṙ = z�ż ≡ α(z1z2 − z2z1)+ z2(δz2 + β(z1z2 − z2z1))

+ O(‖z‖5) ≡ r4δ + O(r5),

that is
ṙ = δr3 + O(r4). (16)

Hence, if δ < 0, r tends to zero, i.e. the nonlinear part stabilizes ‘in third order’. Of
course, in the case of the investigated physical pendulum, we expect δ = 0 since it
is a Hamiltonian system.

The time period of the oscillation can be approximated from the differential
equation derived for the angular polar-coordinate ϑ using the transformations z1 =
r cosϑ and z2 = −r sin ϑ :

r2ϑ̇ = ż1z2 − z1 ż2 + O(‖z‖5) ≡ αz2
2 + r2(δz1z2 + βz2

2)

+ αz2
1 − r2(−βz2

1 + δz1z2)+ O(r5),

that is
ϑ̇ = α + βr2 + O(r3). (17)

The third-order normal form defined by (15) can be obtained using the near-identity
transformation as follows:

y = z + g2(z)+ g3(z), (18)

where g2(z) and g3(z) contain only second and third-degree nonlinearities, respec-
tively.

Differentiating Eq. (18) with respect to the time and substituting it back into
Eq. (14), we get(

I + ∂g2

∂z
+ ∂g3

∂z

)
ż = Jz + Jg2(z)+ Jg3(z)

+ f(z + g2(z))+ O(‖z‖4), (19)
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where only the third-degree terms were taken into consideration (see also f(y)).
The inverse of matrix I + X expanded into power series to the second degree is

(I + X)−1 ≈ I − X + X2.

Thus, the inverse of the coefficient matrix on the left hand-side of Eq. (19) can be
approximated as

(
I + ∂g2

∂z
+ ∂g3

∂z

)−1

≈ I − ∂g2

∂z
− ∂g3

∂z
+
(
∂g2

∂z

)2

,

with which multiplying Eq. (19) and holding only the at most third degree terms
we get:

ż ≈ Jz + Jg2(z)− ∂g2

∂z
Jz + Jg3(z)+

((
∂g2

∂z

)2

− ∂g3

∂z

)
Jz

− ∂g2

∂z
Jg2(z)+

(
I − ∂g2

∂z

)
f(z + g2(z)).

Collecting the terms of this equation according to the power of zi z j , the coefficients
of the second-degree terms have to vanish. Furthermore, the coefficients of the
third-degree terms have to correspond with Eq. (15). With these conditions, the
coefficients of the nonlinear transformation given by Eq. (18) can be determined,
and thus δ and β can also be obtained. The generally derived formulas to calculate
δ and β are the following:

δ = 1

8

(
3 f (30)

1 + f (21)
2 + f (12)

1 + 3 f (03)
2

)
(20)

+ 1

8α

(
f (11)
2 ( f (20)

2 + f (02)
2 )− f (11)

1 ( f (20)
1 + f (02)

1 )

−2( f (20)
1 f (20)

2 + f (02)
1 f (02)

2 )
)

and

β = −1

8

(
3 f (30)

2 − f (21)
1 + f (12)

2 − 3 f (03)
1

)
(21)

− 1

24α
(. . . )

For the case of the pendulum, according to Eq. (13) only f (30)
2 �= 0:

δ = 0,

β = −3

8
f (30)
2 ≡ −3α

48
.
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That is, the third-degree nonlinearity does not influence the amplitude of the os-
cillation (and neither do the terms of higher degree, surely, this is a conservative
Hamiltonian system).

The time period of the oscillation can be determined substituting β back into
the expression of angular velocity ϑ̇ given in Eq. (17). Thus, with

r2 = z2 ≈ y2 ≡ (T−1x)2 ≡ x2
1 + x2

2/α
2 ≡ ϕ2

0 + (ϕ̇0/α)
2,

we obtain
ϑ̇ = α − α

16
ϕ2

0 + O(ϕ3
0),

where for the sake of simplicity, the initial angular velocity was assumed to be zero:
ϕ̇0 = 0. Hence,

T ≈ 2π

ϑ̇
= 2π

α
(
1 − 1

16ϕ
2
0

) . (22)

3.3. Approximating the Time Period Using KRYLOV’s Asymptotic Technique

Following the method described by KRYLOV [3], [2], let us search the solution ϕ(t)
of Eq. (11) belonging to the initial conditions ϕ(0) = µ, ϕ̇(0) = 0 in the following
form:

ϕ(t) ≈ µϕ1(t)+ µ2ϕ2(t)+ µ3ϕ3(t), (23)

and let the initial conditions be satisfied in the following manner:

(ϕ1(0), ϕ̇1(0)) = (1, 0) (24)
(ϕi (0), ϕ̇i(0)) = (0, 0) (i = 2, 3) (25)

Furthermore, let γ denote the angular eigenfrequency of the solution ϕ(t). Its power
series expansion, with respect to the initial angular displacement, is

γ = α + µh1 + µ2h2 + O(µ3). (26)

Let us take the square of Eq. (26), and express α2 from it and put it back into
Eq. (11):

ϕ̈ + γ 2ϕ = (
2αh1µ+ h2

1µ
2 + 2αh2µ

2 + O(µ3)
)
ϕ + α2

6
ϕ3 + O(ϕ5). (27)

Let us substitute the power series expansion of ϕ(t) according to Eq. (23) into
Eq. (27) and collect the power of µ:

µ : ϕ̈1 + γ 2ϕ1 = 0 (28)

µ2 : ϕ̈2 + γ 2ϕ2 = 2αh1ϕ1 (29)

µ3 : ϕ̈3 + γ 2ϕ3 = (
h2

1 + 2αh2
)
ϕ1 + 2αh1ϕ2 + α2

6
ϕ3

1 (30)

µ4 : . . .
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The solution of Eq. (28) satisfying the initial condition (24) is ϕ1(t) = cos γ t . After
substituting it into Eq. (29), we obtain a differential equation with resonant right
hand-side, which has an aperiodic particular solution. This can only be avoided
with h1 = 0. However, in this case, Eq. (29) will be a homogeneous differential
equation and its solution for the initial conditions (25) is ϕ2(t) ≡ 0.

This simplifies Eq. (30) as follows:

ϕ̈3 + γ 2ϕ3 =
(

2αh2 + 3α2

24

)
cos γ t + α2

24
cos 3γ t,

where the trigonometric formula 4 cos3 γ t = cos 3γ t+3 cos γ t was applied. Again,
the resonant case can be avoided by eliminating cos γ t , i.e.

h2 = − α

16

⇒ T ≈ 2π

γ
= 2π

α(1 − 1
16µ

2)
, (31)

if h1 and h2 are substituted back into Eq. (26).

Remarks Instead of the power series equation of the angular eigenfrequency γ
given by (26) the following formula could also be applied

γ 2 = α2 + µh1 + µ2h2 + O(µ3).

However, this yields the following result instead of (30):

ϕ̈3 + γ 2ϕ3 =
(

h2 + 3α2

24

)
cos γ t + α2

24
cos 3γ t,

from which h2 = −α2/8 and thus the time period of the oscillation is

T ≈ 2π

α

√
1 − 1

8µ
2
.

However, this approximation is worse than the formula at (31). The latter shows
a quite good agreement with the real value of the time period in the interval 0 ≤
µ < 2.7 [rad] of the initial angular displacement. This can be verified by numerical
simulation, as shown in Fig. 3.
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Fig. 3. The approximations of the time period of a single pendulum.

4. Conclusions

The equation of motion of a generally excited single pendulum was derived. After
the known analysis of the linear forced system, the free vibrations of the nonlinear
system were investigated: we show that the method based on the third-order normal
forms and Krylov’s asymptotical technique can yield the same formula of the time
period. However, the way of application of small parameters in Krylov’s method
can influence the order of the formula.
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