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Abstract

Consistent and simple lumped mass matrices are formulated for the dynamic analysis of beams with
arbitrary cross-section. The development is based on a general beam theory which includes the effect
of flexural-torsion coupling, the constrained torsion warping and the shear centre location. Numerical
tests are presented to demonstrate the importance of torsion warping constraints and the acceptable
accuracy of the lumped mass matrix formulation.
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1. Introduction

During the torsion of bars an out of section plane, axial warping displacement takes
place which is assumed to depend on the change of the angle of twist. The torsional
warpinghas no effect on stresses if themeasure ofwarping is the same in each section
including the ends. This implies that the torsional rotation is a linear function along
the beam axis. If the torsional rotation is far from the linear distribution, as it is in
torsional vibration modes, or the beam ends are constrained, the torsional warping
may have an important effect on the static or dynamic response of the beam structure.
In addition to the torsion warping effect, the coupling between the bending and the
tosional free vibration modes occurs when the centroid (mass centre) and the shear
centre (centre of twist) of the beam section are non-coincident.

The thin-walled beam theory was established by VLASOV [1] and TIMO-
SHENKO and GERE [2]. Among others coupled bending-torsional vibrations of
beams have been investigated in recent years by FRIBERG [3] and BANERJE [4].
TRAHAIR and PI [5] summarized a series of investigations on this field. A consistent
finite element formulation for the free vibration was presented by KIM [6]. In this
paper an exactly integrated consistent and a lumped mass matrices are presented for
the 7 DOF finite element beam model. The formulation includes the flexure-torsion
coupling and the constrained warping effects.

The equation for free vibration of an elastic system undergoing small defor-
mations and displacements can be expressed in the form

K U + M Ü = 0,
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where K and M are the assembled elastic stiffness and mass matrices respectively,
and U(t) is the set of nodal displacements. The dot represents the time derivative.

2. Kinematics of Beam

Fig. 1 shows the basic systems and notations. The local x axis of the right hand
orthogonal system is parallel to the beam straight axis and passes trough the N1
N2 element nodes of the finite element mesh. The axes y and z are parallel to the
principal axes, signed as r and s. The position of the centroid C and shear centre T
relative to the node N in the plane of the section is given by the co-ordinates yNC ,
yCT and zNC , zCT .
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Fig. 1.

The linear kinematics of an initially straight, prismatic beam element can
be described on the assumption that the cross-section undergoes a rigid body like
motion in the plane normal to the centroidal axis. Accordingly, the in plane dis-
placements of a point can be expressed by three parameters, the angle of twist θTx
about the longitudinal axis passing trough the T shear centre and the two uT

y and uT
z

displacement components of point T. The axial displacement is the sum of the uC
x

axial displacement of the C centroid, the θC
y , θC

z rotations of planar section about
the axes r and s, and the out of plane torsion warping displacement. Accordingly,
the displacement vector is

u (x, r, s, t) = [uk] =
[

ux
uy
uz

]
=


 uC

x + �C
y s − �C

z r − ϑωT

uT
y − �T

x (s − zCT )

uT
z + �T

x (r − yCT )


 , (1)

where ϑ (x, t) is the warping parameter and ωT (r, s) is the warping function, or –
for thin walled sections – the sector area co-ordinate.
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The geometric properties of the cross-section are

Ir =
∫

A
s2 dA, Is =

∫
A

r2 dA, Iω =
∫

A
ωT 2

dA,

yCT = − 1

Ir

∫
A

sωT dA, zCT = 1

Is

∫
A

rωT dA,

(2)

J = Ir + Is +
∫

A

(
s
∂ωT

∂r
− r

∂ωT

∂s

)
dA,

IP =
∫

A

[
(r − yCT )2 + (s − zCT )2] dA = Is + Ir + A

(
y2

CT + z2
CT

)
and the principal r , s co-ordinates in Fig. 1 were chosen so that the following
integrals are zero:∫

A
r dA = 0,

∫
A

s dA = 0,

∫
A

rs dA = 0,∫
A
ωT dA = 0,

∫
A

rωT dA = 0,

∫
A

sωT dA = 0.

By using the displacement (1) and the VLASZOV and BERNOULLI [7] constraints
as

�C
y (x, t) = −duT

z

dx
= −u′T

z , �C
z (x, t) = duT

y

dx
= u′T

y , ϑ (x, t) = d�T
x

dx
= �′T

x ,

(3)
the U strain and K kinetic energy stored in a linear elastic beam element of length
L are:

U = 1

2

∫ L

0

[
E Au ′C2

x + E Iru
′′T 2

z + E Isu
′T 2

y + G J�′T 2

x + E Iω�′′T 2

x

]
dx,

K = 1

2

∫
L

[
u̇C2

x + u̇T 2

y + u̇T 2

z + Ir

A
u̇′T 2

z + Is

A
u̇′T 2

y + Iω
A

�̇′T 2

x + Ip

A
�̇T 2

x (4)

+2
(
zCT u̇T

y �̇T
x − yCT u̇T

z �̇T
x

) ]
ρ A dx,

where E , G are the properties of isotropic elastic material and ρ is the mass density.
The assumptions (3) imply that the shear deformations are neglected. A more
detailed description of deformation including the shear effect can be found in [6]
or [9].

3. Element Matrices

The derivation of element matrices is based on the assumed displacement field. A
linear interpolation is adopted for the axial displacement and a cubic for the lateral
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deflections and the twist:

uC
x = uC

x1(1 − ξ) + uC
x2ξ,

uT
y (ξ) = uT

y1N1(ξ) + �C
z1L N 2(ξ) + uT

y2N3(ξ) + �C
z2L N 4(ξ),

uT
z (ξ) = uT

z1N1(ξ) − �C
y1L N 2(ξ) + uT

z2N3(ξ) − �C
y2L N 4(ξ),

�T
x (ξ) = �T

x1N1(ξ) + ϑ1L N2(ξ) + �T
x2N3(ξ) + ϑ2L N 4(ξ),

(5)

in which:

N1 = 1 − 3ξ2 + 2ξ 3, N2 = ξ − 2ξ 2 + ξ 3, N3 = 3ξ 2 − 2ξ 3,

N4 = ξ 3−ξ2, ξ = x

L
.

Define the order of the element 2 × 7 = 14 local displacements at the two ends as

UC

(14,1)
(t)

= [
uC

x1, uT
y1, uT

z1, �T
x1, �C

y1, �C
z1, ϑ1, uC

x2, uT
y2, uT

z2, �T
x2, �C

y2, �C
z2, ϑ2

]T
.

(6)

Substituting interpolation (5) into (4) the expression for the potential and kinetic
energy may be defined in terms of (6) local variables as

U = 1

2
UCT

kCUC, K = 1

2
U̇CT

mCU̇C .

The explicit – exactly integrated – stiffness and consistent mass matrices, kC and
mC are given in Appendices A and B, respectively. The stiffness matrix – apart
from sign conventions – is identical to the matrix published in [10], page 89.

The lumped mass matrix can be derived from the kinetic energy expression
for an element which undergoes a rigid body like motion and rotation. The element
lumped mass matrix is given in Appendix C. Here the lumped mass, due to the shear
centre location, is not a diagonal matrix. Nevertheless, it is computationally much
more economical than the corresponding consistent mass detailed in Appendix B.

4. Transformation from Local to Nodal Variables

The transformation which relates the (6) local variables to nodal displacements are:
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uC
x

uT
y

uT
z

�T
x

�C
y

�C
z

ϑ




=




1 0 0 0 zNC −yNC 0
0 1 0 −(zNC + zCT ) 0 0 0
0 0 0 (yNC + yCT ) 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 1







uN
x

uN
y

uN
z

�N
x

�N
y

�N
z

ϑ




(7)

Using the above transformation at each node the stiffness and mass matrix can be
transformed to the local x , y, z system in the corresponding mesh node. Finally,
the element stiffness and mass matrices evaluated in the local x , y, z system are
transformed to the global X , Y , Z structural system in a usual manner. A detailed
description of the (7) transformation process can be found in [8].

5. Numerical Examples

In order to examine the validity and accuracy of the lumped mass formulation,
the vibration analysis of a simply supported and a cantilever beam is conducted.
Numerical solutions of the present study are compared with the analytical and
COSMOS/M shell element results.

5.1. Simply Supported Beam

Material and sectional properties used in this example are listed in Fig.2. Closed
form solution for the torsional vibration with free end warping is known as [1]:

αn = n

2L

√
G J

ρ (Ir + Is)

√√√√√√√
1 + n2

π2E Iω
L2G J

1 + n2
π2 Iω

L2 (Ir + Is)

, n = 1, 2, .... (8)

Thebeamwas analysedwith different m number of elements. At the endnodes
(x = 0, L) in addition to the normal hinged support conditions the 7th warping
parameter was left free. Tables 1a and 1b show that the torsional frequencies –
even for a coarse mesh and lumped mass – are in good agreement with the (8)
analytical solution. As the convergence study shows that m = 20 element number
is sufficient to get a reasonable accuracy and number of modes, this mesh is used
in the subsequent problems.
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L = 2000 mm
A = 2848 mm2

Ir = 1.943 e7 mm4

Is = 1.423 e6 mm4

J = 6.847 e4 mm4

Iω = 1.274 e10 mm4

E = 2.0 e5 N/mm2

G = 0.8 e5 N/mm2

ν = 0.25
ρ = 8.0 N sec2/mm4

Fig. 2. Simply supported beam with doubly symmetric section

Table 1a. Convergence of torsional frequencies (Hz), with consistent mass matrix. 7 DOF
results with free end warping

n m = 2 m = 4 m = 8 m = 16 m = 20 analitical

1 66.485 66.349 66.340 66.339 66.339 66.339
2 214.29 213.63 213.59 213.59 213.59
3 462.00 454.91 454.41 454.39 454.37
4 790.89 788.13 788.01 787.93
5 1222.5 1212.4 1212.0 1211.6

Table 1b. Convergence of torsional frequencies (Hz), with lumped mass matrix. 7 DOF
results with free end warping.

n m = 2 m = 4 m = 8 m = 16 m = 20 analitical

1 65.601 66.309 66.338 66.339 66.339 66.339
2 211.83 213.51 213.58 213.59 213.59
3 425.59 453.54 454.33 454.36 454.37

782.73 787.71 787.84 787.93
5 1187.8 1210.8 1211.3 1211.6

5.2. Cantilever

To illustrate the importance of internal and external warping constraint and the
performance of the lumped mass matrix, the results of two test problems with the
same material properties are detailed herein: a straight cantilever with (1) a double
symmetric I and (2) with U section. In each case the beam structure was analysed
with a 20-element mesh. A comparison was made with the classic – neglected
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warping effect – beam frequency solutions (columns A in Tables2, 3a):

bending:

αn = �n

2π L2

√
I E

Aρ
, �1 = 1.8752, �2 = 4.6942, �2 = 7.8552, (9a)

torsion:

αn = 2n − 1

4L

√
G J

ρ (Ir + Is)
, n = 1, 2, . . . (9b)

and the results of 6 DOF beam element model (columns B in Tables2, 3a). More-
over, the frequencies of the beam like modes obtained by COSMOS/M thick shell
finite element model are listed in ‘SHELL’ columns in Tables 2 and 3b. The can-
tilevers were modelled by using 1280 (U section) and 1600 (I section) four-noded
thick shell elements.

(1) I section

IPE 200
L = 2000 mm
A = 2848 mm2

Ir = 1.943 e7 mm4

Is = 1.423 e6 mm4

J = 6.847 e4 mm4

Iω = 1.274 e10 mm4

E = 2.0 e5 N/mm2

G = 0.8 e5 N/mm2

ν = 0.25
ρ = 8.0 N sec2/mm4

Fig. 3. Cantilever with doubly symmetric section

Table 2. Test problem 1, torsional frequencies (Hz), 6 DOF results (B) and 7 DOF results
with free end warping (C) and constrained end warping (D).

A B(cons) B(lump) C(cons) C(lump) D(cons) D(lump) SHELL

1 22.650 22.650 22.650 23.889 23.881 33.516 33.494 30.29
2 67.951 67.951 67.938 105.91 105.62 135.03 134.55 127.4
3 113.25 113.25 113.17 272.59 271.05 326.85 324.78 317.3
4 158.55 158.55 158.26 533.82 532.74 612.39 606.89
5 203.85 203.85 203.05 887.57 878.31 989.69 978.28
6 249.15 249.16 247.31 1330.6 1312.7 1455.5 1435.0

The comparison of results in columns A, B with others in C, D shows the



106 G. M. VÖRÖS

significant effect of warping inertia and internal (C) and external (D) warping con-
straints on torsional vibration.

(2) U section

U 200
L = 2000 mm
A = 3157 mm2

Ir = 1.972 e7 mm4

Is = 1.955 e6 mm4

J = 1.025 e4 mm4

Iω = 1.227 e10 mm4

yCT = −48.7 mm

Fig. 4. Cantilever with a channel section

Table 3a. Test problem 2, frequencies (Hz), 6 DOF results (B). byi , bzi bending, ti torsion,
ai longitudinal modes.

n mode A B (cons) B (lump)

1 by1 17.379 17.375 17.355
2 t1 26.635 26.635 26.635
3 bz1 54.720 54.533 54.471
4 t2 79.906 79.906 79.891
5 by2 108.92 108.66 108.23
6 t3 133.18 133.18 133.08
7 t4 186.45 186.45 186.11
8 t5 239.72 239.72 238.78
9 t6 292.99 292.99 290.82

10 by3 305.02 303.02 301.25

19 a1 625.00 625.16 624.84

The modes – except the byi bending modes – in consequence of the eccentric
position of the shear centre exhibit strong flexural bending coupling. This coupling
phenomenon cannot be predicted by the classic 6 DOF finite element model.

All the numerical results prove the good accuracy of the simple lumped mass
matrix.
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Table 3b. Test problem 2, frequencies (Hz), 7 DOF results with free end warping (C) and
constrained end warping (D). byi , bzi bending, ti torsion, ai longitudinal modes.

mode C(cons) C(lump) mode D(cons) D(lump) mode SHELL

1 by1 17.375 17.355 by1 17.375 17.355 by1 17.31
2 bz+t1 23.314 23.306 bz+t1 30.198 30.182 bz+t1 29.57
3 bz+t2 63.876 63.791 bz+t2 66.630 66.535 bz+t2 65.34
4 bz+t3 98.621 98.324 by2 108.66 108.23 by2 105.83
5 by2 108.66 108.23 bz+t3 119.90 119.45 bz+t3 116.14
6 bz+t4 234.78 233.44 bz+t4 279.27 277.40 bz+t4 269.83
7 by3 303.20 301.25 by3 303.20 301.25
8 bz+t5 391.58 390.43 bz+t5 392.24 391.44
9 bz+t6 453.22 494.43 bz+t6 517.44 512.14

10 by4 591.23 585.93 by4 591.23 585.93
11 a1 625.16 624.84 a1 625.16 624.84
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Appendix A

The 14 × 14 linear stiffness matrix kC is symmetric. Only the upper triangle is
given here.

kC =




a 0 0 0 0 0 0 −a 0 0 0 0 0 0
b 0 0 0 c 0 0 −b 0 0 0 c 0

d 0 −e 0 0 0 0 −d 0 −e 0 0
f 0 0 g 0 0 0 − f 0 0 g

2h 0 0 0 0 e 0 h 0 0
2i 0 0 −c 0 0 0 i 0

j 0 0 0 −g 0 0 k

a 0 0 0 0 0 0
b 0 0 0 −c 0

d 0 e 0 0
f 0 0 −g

2h 0 0
2i 0

j




a = E A

L
, b = 12E I s

L3
, c = 6E I s

L2
, d = 12E I r

L3
,

e = 6E I r

L2
, f = 6G J

5L
+ 12E I ω

L3
, g = G J

10
+ 6E I ω

L2
, h = 2E I r

L
,

i = 2E I s

L
, j = 2G J L

15
+ 4E I ω

L
, k = −G J L

30
+ 2E I ω

L
.

Appendix B

The 14 × 14 consistent mass matrix. mC

(14,14)
= ρ AL

[
m1 m12

mT
12 m2

]
,
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m1
(7,7)

=




2a 0 0 0 0 0 0
b + ki 2

s 0 bzCT 0 f + mi2
s f zCT

b + ki 2
r −byCT − f − mi2

r 0 f yCT

bi2p + ki4
ω − f yCT f zCT f i2

p + mi4
ω

h + 4ei2
r 0 hyCT

h + 4ei2
s hzCT

hi2
p + 4ei 4

ω




m2
(7,7)

=




2a 0 0 0 0 0 0
b + ki2

s 0 bzCT 0 − f − mi2
s − f zCT

b + ki2
r −byCT f + mi2

r 0 − f yCT

bi2p + ki4
ω f yCT − f zCT − f i2

p − mi4
ω

h + 4ei2r 0 hyCT
h + 4ei2

s hzCT

hi2
p + 4ei4ω




m12
(7,7)

=




a 0 0 0 0 0 0
0 c − ki 2

s 0 czCT 0 −g + mi2
s −gzCT

0 0 c − ki 2
r −cyCT g − j i2r 0 −gyCT

0 czCT −cyCT ci2p − ki4
ω gyCT −gzCT −gi2p + mi4

ω

0 0 −g + mi 2
r −gyCT − j − ei2r 0 − j yCT

0 g − mi2
s 0 gzCT 0 − j − ei2

s − j zCT

0 gzCT gyCT gi2p − mi4
ω − j yCT − j zCT − j i2p − ei4

ω




a = 1

6
, b = 13

35
, c = 9

70
, e = 1

30
, f = 11L

210

g = 13L

420
, h = L2

105
, j = L2

140
, k = 6

5L2 , m = 1

10L
.

i2
r = Ir

A
, i2

s = Is

A
, i2

p = i2
r + i2

s + y2
CT + z2

CT , i4
ω = Iω

A
.
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Appendix C

The 14 × 14 lumped mass matrix.

mC

(14,14)
=

[
m 0
0 m

]
, m

(7,7)
= ρ AL

2




1 0 0 0 0 0 0
1 0 zCT 0 0 0

1 −yCT 0 0 0

i2
P 0 0 0

i2
r 0 0

i2
s 0

i4
ω
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