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Abstract

Consistent and simple lumped mass matrices are formulated for the dynamic analysis of beams with
arbitrary cross-section. The development isbased on ageneral beam theory which includes the effect
of flexural-torsion coupling, the constrained torsion warping and the shear centrelocation. Numerical
tests are presented to demonstrate the importance of torsion warping constraints and the acceptable
accuracy of the lumped mass matrix formulation.
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1. Introduction

During the torsion of bars an out of section plane, axial warping displacement takes
place which is assumed to depend on the change of the angle of twist. Thetorsional
warping hasno effect on stressesif themeasure of warping i sthe samein each section
including the ends. Thisimpliesthat thetorsional rotation isalinear function along
the beam axis. If the torsional rotation isfar from the linear distribution, asitisin
torsiona vibration modes, or the beam ends are constrained, the torsional warping
may have animportant effect on the static or dynamic response of thebeam structure.
In addition to the torsion warping effect, the coupling between the bending and the
tosional free vibration modes occurs when the centroid (mass centre) and the shear
centre (centre of twist) of the beam section are non-coincident.

The thin-walled beam theory was established by VLAsov [1] and TimoO-
SHENKO and GERE [2]. Among others coupled bending-torsional vibrations of
beams have been investigated in recent years by FRIBERG [3] and BANERJE [4].
TRAHAIR and PiI [5] summarized aseriesof investigationsonthisfield. A consistent
finite element formulation for the free vibration was presented by Kim [6]. In this
paper an exactly integrated consistent and alumped mass matrices are presented for
the 7 DOF finite element beam model. Theformulation includes the flexure-torsion
coupling and the constrained warping effects.

The equation for free vibration of an elastic system undergoing small defor-
mations and displacements can be expressed in the form

KU+MU=0,
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where K and M are the assembled elastic stiffness and mass matrices respectively,
and U(t) isthe set of nodal displacements. The dot represents the time derivative.

2. Kinematics of Beam

Fig. 1 shows the basic systems and notations. The local x axis of the right hand
orthogonal system is parallel to the beam straight axis and passes trough the N
N, element nodes of the finite element mesh. The axes y and z are parallel to the
principal axes, signed asr and s. The position of the centroid C and shear centre T
relative to the node N in the plane of the section is given by the co-ordinates yc,

ycr and zyc, ZcT.
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Fig. 1.

The linear kinematics of an initially straight, prismatic beam element can
be described on the assumption that the cross-section undergoes arigid body like
motion in the plane normal to the centroidal axis. Accordingly, the in plane dis-
placements of a point can be expressed by three parameters, the angle of twist §
about the longitudinal axis passing trough the T shear centre and the two @ and ul
displacement components of point T. The axial displacement is the sum of the U
axial displacement of the C centroid, the 9)?, 6< rotations of planar section about
the axesr and s, and the out of plane torsion warping displacement. Accordingly,
the displacement vector is

Uy ug + 05s— 0gr — v’
ux,r,st) =[ug = [ Uy } = u; — O3 (s — zc) . @
Uz uy + Oy (r — yer)

where ¥ (X, t) isthe warping parameter and o' (r, s) is the warping function, or —
for thin walled sections — the sector area co-ordinate.
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The geometric properties of the cross-section are

I, :/ssz, IS:/rsz, |w:/wT2dA,
A A A

1 1
YeT = —— SwT dA, zcT = —/ er dA,
Ir A IS A

dow’ dow’
J =1 [ S— —r—— | dA,
. +/( o as)

Ip =/ [(I‘ — yCT)2+ (s— ZCT)Z] dA=Is+ I, + A(y(z:T _|_ZéT)
A

e

and the principal r, s co-ordinates in Fig. 1 were chosen so that the following
integrals are zero:

/rdA:O, /sdA:O, /rsdA:O,
A A A

/a)TdA=o, /erdA=o, /Sa)TdA=O.
A A A

By using the displacement (1) and the VLASzov and BERNOULLI [7] constraints
as

dul dul derT
C _ z T C _ Y _ /T _ T

the U strain and K kinetic energy stored in alinear elastic beam element of length
L are:

1 L
U= 5/ [EAu’XCZ +ELUT 4+ Elu] + GIO]” + E|w®QTZ] dx,
0

1 'C2 _T2 'T2 Ir '/T2 Is '/T2 Iw -/T2 Ip -T2
Kz—/L[uX +0, +u, eruZ eruy +K®X +K®X 4

12 (zera] O] yCTu;@;)] pAdx,
where E, G arethe properties of isotropic elastic material and p isthe massdensity.
The assumptions (3) imply that the shear deformations are neglected. A more

detailed description of deformation including the shear effect can be found in ]
or[9].

3. Element Matrices

The derivation of element matrices is based on the assumed displacement field. A
linear interpolation is adopted for the axial displacement and a cubic for the lateral
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deflections and the twist:

ug = U (1—€) + UpE,
Uy (€) = uj;Ni(€) + OFH LN(E) + Uj,N3(€) + OFHLN,4(E),
u (&) = ul N1 (&) — O3 LN(8) + UL, Ng(§) — O L N4 (),
OF (&) = O N1(§) + P1LN2(&) + O ,Ng(§) + 2L N4(8),

()

in which:

N =1-362+26% Np=§—262+4£3 N3=32-2%°
No =362 &=

Define the order of the element 2 x 7 = 14 local displacements at the two ends as

uc ()

(14,1)
_NnC T T aT aC @c cC T T & oC @C .17
- [uxl’ uyl’ uzl’ Oxl’ Oyl’ ®21’ 191’ sz, uy2’ u22’ Ox2’ Oy2’ ®22’ 192] .

(6)

Substituting interpolation (5) into (4) the expression for the potential and kinetic
energy may be defined in terms of (6) local variables as

1 1. .
U= EuchCuC, K = EuchCuC.

The explicit — exactly integrated — stiffness and consistent mass matrices, K and
mC are given in Appendices A and B, respectively. The stiffness matrix — apart
from sign conventions —is identical to the matrix published in [LO], page 89.

The lumped mass matrix can be derived from the kinetic energy expression
for an element which undergoes arigid body like mation and rotation. The element
lumped mass matrix isgiven in Appendix C. Here the lumped mass, dueto the shear
centre location, is not adiagonal matrix. Nevertheless, it is computationally much
more economical than the corresponding consistent mass detailed in Appendix B.

4. Transformation from Local to Nodal Variables

Thetransformation which relates the (6) local variablesto nodal displacements are:
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u -1 00 0 Zne —Yne | O Uy

u¥ 0 1 0|—(zyvc+zer) O 0 |0 uz

u, 0 0 O (Yne + Yer) 0 0 0 u;

e |=| 000 1 o o0 [o]]| eV ©
ec 000 0 1 0 |0]]| eN

of 000 0 o o |o]|]| eh
"9 | Looo 0 o o [1]]| 7y |

Using the above transformation at each node the stiffness and mass matrix can be
transformed to the local X, y, z system in the corresponding mesh node. Finaly,
the element tiffness and mass matrices evaluated in the local X, y, z system are
transformed to the global X, Y, Z structural system in ausua manner. A detailed
description of the (7) transformation process can be found in [3].

5. Numerical Examples

In order to examine the validity and accuracy of the lumped mass formulation,
the vibration analysis of a simply supported and a cantilever beam is conducted.
Numerical solutions of the present study are compared with the analytical and
COSMOS/M shell element results.

5.1. Smply Supported Beam

Material and sectional properties used in this example are listed in Fig.2. Closed
form solution for the torsional vibration with free end warping is known as[1]:

1+n27r2EIw
n GJ 2
o= — LG n=12.. @®
2L p(Ir +1s) 14 n2 l,
L2l + 1)

Thebeam wasanalysed with different m number of elements. Attheendnodes
(x = 0, L) in addition to the normal hinged support conditions the 7th warping
parameter was left free. Tables 1a and 1b show that the torsiona frequencies —
even for a coarse mesh and lumped mass — are in good agreement with the @)
analytical solution. Asthe convergence study shows that m = 20 element number
is sufficient to get a reasonable accuracy and number of modes, this mesh is used
in the subsequent problems.
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L = 2000 mm E = 2.0 e® N/mm?
s (=) A = 2848 mm? G = 0.8 €® N/mm?
« Ir =1.943¢/ mm* | v=0.25
4+ —— Is = 1.423 8 mm* | p = 8.0 N sec?/mm?*
L 1) J = 6.847 ¢ mm?
ke 3| lp = 1.274 0 mm?

Fig. 2. Simply supported beam with doubly symmetric section

Table 1a. Convergenceof torsional frequencies (Hz), with consistent mass matrix. 7 DOF
results with free end warping

n m=2 m=4 m=38 m=16 m=20 andlitical
1 66.485 66.349 66.340 66.339 66.339 66.339
2 214.29 213.63 213.59 213.59 213.59
3 462.00 454.91 45441 454.39 454.37
4 790.89 788.13 788.01 787.93
5 12225 12124 1212.0 1211.6

Table 1b. Convergence of torsional frequencies (Hz), with lumped mass matrix. 7 DOF
results with free end warping.

n m=2 m=4 m=38 m=16 m=20 andltical
1 65601 66.309 66.338 66.339 66.339 66.339
2 211.83 21351 213.58 213.59 213.59
3 425,59 453,54 454.33 454.36 454.37

782.73 787.71 787.84 787.93
5 1187.8 1210.8 1211.3 1211.6

5.2. Cantilever

To illustrate the importance of internal and external warping constraint and the
performance of the lumped mass matrix, the results of two test problems with the
same material properties are detailed herein: astraight cantilever with (1) adouble
symmetric | and (2) with U section. In each case the beam structure was analysed
with a 20-element mesh. A comparison was made with the classic — neglected
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warping effect — beam frequency solutions (columns A in Tables2, 3a):

bending:
r | E
wn =z [——, T1=1875, T,=4694 T,
2rL2\ Ap
torsion:
2n—-1 GJ
oy = ., n=12...
4L p (I +1s)

= 7.855%, (9a)

(9b)

and the results of 6 DOF beam element model (columns B in Tables2, 3a). More-
over, the frequencies of the beam like modes obtained by COSMOS/M thick shell
finite element model are listed in ‘SHELL' columns in Tables2 and 3b. The can-
tilevers were modelled by using 1280 (U section) and 1600 (I section) four-noded

thick shell elements.

(D) I section

IPE 200
Izﬁs} =s) L = 2000 mm
. A = 2848 mm?
I_ _________ — —» Iy =1.943 87 mm?
| g = 1.423 5 mm?

= J = 6.847 ¢* mm*
l, = 1.274 €19 mm?*

E = 2.0 &> N/mm?
G = 0.8 €® N/mm?
v=0.25

p = 8.0N sec?/mm?

Fig. 3. Cantilever with doubly symmetric section

Table 2. Test problem 1, torsional frequencies (Hz), 6 DOF results (B) and 7 DOF results

with free end warping (C) and constrained end warping (D).

A B(cons) B(lump) C(cons) C(lump) D(cons) D(lump) SHELL
1 22650 22650 22650 23889 23831 33516 33494 30.29
2 67951 67951 67938 10591 10562 135.03 13455 1274
3 11325 11325 11317 27259 271.05 32685 32478 317.3
4 15855 15855 15826 533.82 53274 61239 606.89
5 20385 20385 203.05 88757 87831 989.69 978.28
6 24915 24916 24731 13306 13127 14555 14350

The comparison of results in columns A, B with others in C, D shows the
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significant effect of warping inertiaand internal (C) and external (D) warping con-

straints on torsional vibration.

(2) U section
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Fig. 4. Cantilever with achannel section

a longitudina modes.

The modes — except the byi bending modes— in consequence of the eccentric
position of the shear centre exhibit strong flexural bending coupling. This coupling
phenomenon cannot be predicted by the classic 6 DOF finite element model.

All the numerical results prove the good accuracy of the simple lumped mass
matrix.

Table 3a. Test problem 2, frequencies(Hz), 6 DOF results (B). byi, bzi bending, ti torsion,

n mode A B (cons) B (lump)
1 byl 17379 17375  17.355
2 11 26.635 26.635  26.635
3 bzl 54720 54533 54471
4 12 79906 79.906  79.891
5 by2 10892 108.66  108.23
6 3 13318 13318  133.08
7 t4 186.45 186.45  186.11
8 t5 23972 23972 238.78
9 t6 29299 29299  290.82

10 by3 30502 303.02 301.25
19 al 62500 62516 @ 624.84
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Table 3b. Test problem 2, frequencies (Hz), 7 DOF results with free end warping (C) and

constrained end warping (D). byi, bzi bending, ti torsion, ai longitudinal modes.

mode C(cons) C(lump) mode D(cons) D(lump) mode SHELL

=
PO OWOOO~NOUId WN P

[

byl 17375 17355 byl 17.375  17.355 byl 17.31
bz+t1 23314 23306 bz+tl 30198 30.182 bz+tl  29.57
bz+t2 63876 63.791 bz+t2 66.630 66.535 bz+t2 6534
bz+t3  98.621 98324 by2 108.66  108.23 by2  105.83

by2 108.66  108.23 bz+t3 11990 11945 bz+t3 116.14
bz+t4 23478 23344 bz+t4 279.27  277.40 bz+t4 269.83

by3 30320 301.25 by3 30320 301.25
bz+t5 391.58  390.43 bz+t5 39224  391.44
bz+t6 45322  494.43 bz+t6 517.44  512.14

by4 591.23  585.93 by4 591.23  585.93

al 625.16  624.84 al 625.16 624.84
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Appendix A

The 14 x 14 linear stiffness matrix k® is symmetric. Only the upper triangle is
given here.

—a 0 OO O 0 O0|l—-a O 0 0 0 0 0 T
b OO0 0 ¢c 0] 0 —-b O 0 0 c 0
d 0O —e 0 0| O 0 —-d 0 —e O 0
f 0 0g/lo 0 0O —f 0 0 g
2h 0 0] O 0 e 0 h 0 0
2 0l 0 —c O 0 0 i 0
_ ilo o 0o —g 0 0 k
a 0 0 0 0 0 0
b 0 0 0 —-c O
d 0 e 0 0
f 0O 0 -—g
2h O 0
2i 0
| | -
:E\, b:lZEIS, C:GEIS,, d:lZEIr,
L L3 L2 L3
o  CEll _66J 12EI, _GJ  6El, L 2El
L2 - 5L 2 9570 L2’ L
,_2Els . _2GJL 4El, |, GJL  2El,
L 15 L 30 L
Appendix B
The 14 x 14 consistent mass matrix. mC¢ — pAL | "% M
© (14,14 mIz my |’
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ma
(7.7
[2a 0 0 0 0 0 0 )
b+ki2 0 bzct 0 f+mi2 fzer
b+kiZ| —byct —f—mi? 0 fycr
- biZ +kis —fycr fzer | fid+mi2
h + 4ei? 0 hyct
h+4ei2| hzcr
i hi% + 4ei |
ma
(7,7
[2a 0 0 0 0 0 0 }
b+ki2 0 bzct 0 —f—mi2| —fzq
b+kiZ2| —byct f4mi? 0 —fyer
= biz+kig fycr —fzer | —fiZ—mid
h + 4ei? 0 hycr
h + 4ei2 hzet
i2 P4
i hig + dei,
M2
(7.7
[ a 0 0 0 0 0 0 T
0 c—ki2 0 czcT 0 —g+mi2| —gzet
0 0 c—kiZ | —cyer g-—ji? 0 —gycr
=| 0 czcT —cyct | cif—kis  gycr —9zct | —gig+mi}
0 0 > —g+mi?| —gyct —j—ei? 0 > —iyer
0 g—mig 0 9Zct 0 —] —elg —lZctT
| 0 9Zcr gyct | gi5—mil  —jyer  —izer | —jipg—eid |
1 13 9 1 11L
a= —, = —, = —, e=—, = —
6 35 70 30 210
_BL L2 oL _ 6 1
4200 105" ° 1400 527 10L°
2 Iy 2 Is P2 2 52 2 2 4 lo
Ir:Ks Is = — Ip:|r+ls+yCT+ZCT’ Iw:K'
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Appendix C

The 14 x 14 lumped mass matrix.

= O
= OO

ZcT

—Yc1

14,14)

I'p

—wO|ooo

PO Ol 00O

cn OO0 O0O|O0O0CO




	Introduction
	Kinematics of Beam
	Element Matrices
	Transformation from Local to Nodal Variables
	Numerical Examples
	Simply Supported Beam
	Cantilever


