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Abstract

Three different solutions for orthotropic, beam-like fracture specimens were compared in the current
work. A beam theory-based approach was developed previously by the author. Another solution
based on refined plate theory was also considered. Finally, equations based on a numerical calibration
technique were utilized as a third solution. These solutions were extended for the case of composite
double-cantilever beam, end-loaded split and single-cantilever beam fracture specimens. All the three
solutions give reliable expressions for the double-cantilever beam. In contrast for the end-loaded split
and the single-cantilever beam coupons the three models give quite distinct results, especially for the
mode ratio of the single-cantilever beam specimen.
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1. Introduction

The interlaminar fracture is the primary failure mode in laminated composite struc-
tures. The interlaminar fracture toughness (known as the resistance to delamination)
is determined through beam-like specimens. The double-cantilever beam (DCB)
specimen is a standard tool for measuring the mode-I toughness. For this coupon
numerous improved beam theory-based solutions were developed in the literature,
which incorporates the Winkler foundation and Timoshenko beam theory [1, 2, 3].
For mode-II specimens beam theory [4,5] and the finite element method [6] was
applied to obtain refined solutions for the strain energy release rate. The solution
by Wang and Qiao [7] for the end-notched flexure (ENF) the specimen should be
mentioned due to its elegance and simplicity. For mixed-mode I/II testing many
configurations were developed by the researchers, see for instance [8, 9, 10]. The
standard mixed-mode bending (MMB) is the most universal method, which is inten-
sively applied nowadays [11, 12]. The MMB specimen has several disadvantages,
especially that it requires a complex fixture. The role of material orthotropy on
the fracture toughness of certain composite specimens was investigated by BAO et
al. [13]. In their work closed-form equations were derived based on numerical
calculations for the DCB, the mode-II end-loaded split (ELS) and the mixed-mode
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single-cantilever beam (SCB) specimens. Under mixed-mode I/II condition the
mode decomposition is an important issue. Different methods were developed by
the researchers to solve this problem. The beam theory-based global method was
developed by WILLIAMS [14], while the local method was established by SUO and
HUTCHINSON [15, 16]. The crack tip element analysis is a third analytical method
[17, 18], which is equivalent to the local approach. In the work of BRUNO and
GRECO a refined plate model including shear effect was applied, the individual
mode components were evaluated by using the interlaminar stresses and displace-
ments [19, 20]. This method was found to give the same result as Williams’ global
approach. The global method was improved by the effect of Winkler foundation
and transverse shear in [21]. The local method was completed with shear effect by
WANG and QIAO [22]. Finally, the virtual crack-closure technique (VCCT) should
be mentioned, which is widely applied for mode decomposition and energy release
rate calculation [23].
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Fig. 1. DCB (a), ELS (b) ans SCB (c) delamination specimens

In the current work the DCB, ELS and SCB specimens are examined. Three
different solutions are extended for these fracture specimens including mode-mixity:
beam theory-based solution [7, 21], solution based on refined plate theory [19, 20]
and a numerical solution by BAO et al. [13]. Furthermore, the mode decomposition
based on the VCCT [23] was achieved in the case of the mixed-mode I/II SCB
coupon. The delamination specimens are illustrated in Fig.1.

2. Beam Theory-Based Solution

Based on previous works [7, 14, 21], the following formulae may be derived for the
individual energy release rate components of composite specimens under general



COMPARISON OF SOME DATA REDUCTION SCHEMES 153

mixed-mode I/II loading conditions:

GI = M2
I (12 + fW2 + fT 2)

b2h3E11
, (1)

GI I = M2
I I (9 + fS H2)

b2h3E11
, (2)

where the coefficients in Eqs. (1) and (2) are:
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The mode-I and mode-II bending moments may be obtained as follows [14]:

MI = (M1 − M2)/2, MI I = (M1 + M2)/2, (6)

where M1 and M2 are reduced bending moments at the crack tip. The subscript
refers to the upper (1) and lower (2) specimen arm. The coefficients in Eq. (3) are
defined as:

η1 = 2
√

2, η2 = 2 if: M1 = −M2, (7)
η1 = η2 = 1, otherwise.

In the case of the DCB specimen (see Fig. 1a) the bending moments at the crack
tip are M1 = −Pa, M2 = Pa. Thus the fracture energy from Eq. (1) considering
Eq. (7) becomes:
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Let us consider the case of the mode-II ELS coupon in Fig. 1b, whereas: M1 =
M2 = Pa, from Eq. (2) we obtain:
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For the SCB specimen we can write: M1 = 0, M2 = Pa based in Fig. 1c, thus we
obtain the components from Eqs. (1) and (2):
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The mode ratio (GI /GI I ) of the SCB specimen can be obtained by combining
Eqs. (10)-(11). Note that Eq. (9) is equivalent to Eq. (11), i.e. the mode-II compo-
nent for the SCB is the same as for the ELS coupon.

3. Solution Based on Numerical Calibration

BAO et al. [13] derived the following expressions for the DCB specimen based on
finite element calculations:
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The same manner was used to obtain the expressions below for the SCB specimen:
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where:

λ = E33

E11
, β = (E11E33)

1
2

G13
− ν13ν31 − 1. (15)

Note that for the ELS specimen Eq. (13) can be used.
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4. Solution Based on a Refined Plate Model

BRUNO and GRECO [19, 20] utilized a linear elastic interface model between two
Reissner-Mindlin plates. Their solution can be extended for the DCB and SCB
coupons. The solutions after some transformation can be written as:
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GSCB
I I = GELS

I I = 9P2a2

4b2h3E11
. (18)

For the ELS specimen Eq. (18) applies. It should be noted that this formulation gives
equivalent result to the simple beam theory with respect to the mode-II component,
as it can be seen from Eq. (18).

crack

0.4 mm

Fig. 2. FE mesh around the crack tip

5. Mode Decomposition Using the VCCT Method

For the mixed-mode SCB specimen a series of FE models were constructed to
obtain mode ratios for the SCB specimen in the crack length range of a = 20 −
100 mm. The models were developed in the commercial code COSMOS/M 2.0
using PLANE2D elements under plane stress state, which is consistent with beam
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formulation of the problem. The specimens were 150 mm long, 20 mm wide
and 2h = 6.1 mm thick. The material properties were given for glass/polyester
composite specimens manufactured in our laboratory. The flexural moduli of the
specimens were determined through a non-standard three-point bending test, which
resulted in E11 = 33 GPa. Further material properties were predicted by using
Niederstadt’s [24] approximate rule of mixture: E33 = 7.2 GPa, G13 = 3 GPa
and ν13 = ν31 = 0.27. According to the VCCT method the energy release rate
components are:

GI = 1

2b�a
Fy(v1 − v2), (19)

GI I = 1

2b�a
Fx(u1 − u2), (20)

where Fx , Fy are nodal forces at the crack tip, v1, v2, u1, u2 are nodal displacements
from �a distance to the crack tip and b is the specimen width. A finite element
mesh around the crack tip, suggested by DAVIDSON et al. [9] was applied, as it is
shown in Fig. 2. Crack tip elements with �a = 0.025 mm were used (Fig. 2). At
each crack length the specimens were loaded by P = 1 N at the end and only the
mode-mixity was determined.
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6. Results
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All the equations were normalized with the results of Euler-Bernoulli beam
theory. These are the first terms in Eqs. (8)-(11). The normalized strain energy
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release rates are plotted against the normalized crack length, a/amax, where amax =
100 mm.

For the DCB specimen the three different solutions are plotted in Fig.3. In
this respect Bao’s solution seems to be the best. Although our solution is somewhat
closer to the former one as the solution by Bruno and Greco, the difference between
them is not notable. As a consequence all the three solutions are in good agreement
in this case.

The results for the mixed-mode I/II SCB specimen are illustrated in Figs.4a
and b. In the case of the mode-I component (Fig. 4a) some differences can be
seen, especially between our and Bao’s solution. The plate model by Bruno and
Greco gives the curve between the former two solutions. The normalized mode-
II component is presented in Fig. 4b. The agreement was excellent between our
model and the one by Bao et al. In contrast the mode-II component is equivalent to
the formula of Euler-Bernoulli beam model in accordance with the formulation of
Bruno and Greco.

In the case of the mode-II ELS specimen the same results were obtained as
illustrated in Fig. 4b.

Table 1. Mode ratios (G I /GI I ) by different methods, SCB specimen

a* [mm] 20 30 40 50 60 70 80 90 100

1.353 1.346 1.343 1.341 1.339 1.339 1.338 1.337 1.337*
1.794 1.633 1.555 1.509 1.479 1.458 1.442 1.430 1.420**
1.659 1.551 1.497 1.464 1.442 1.427 1.415 1.406 1.399***
1.250 1.176 1.144 1.120 1.105 1.093 1.085 1.078 1.073****

* present solution, ** solution by Bruno and Greco, 2001, ***solution by Bao et al., 1992,
****VCCT method

The mode ratios by four different approximations are listed in Table 1. Quite
distinct results were obtained even in this case. The model by Bruno and Greco
shows large mode-I dominance. Bao’s numerical formulation gives similar values,
however, these are slightly less than those calculated from the model by Bruno and
Greco. Our beam theory-based approach predicts approximately constant mode
ratios, which is equivalent to the result of Williams’ classical formulation [14].
Finally the plane stress FE model also shows notable crack length dependence of
the mode ratio. The mode-I dominance is not as significant here as in the case
of Bao’s and Bruno and Greco’s solution. The summary of the results indicates
that the mode ratio depends on the method applied for data reduction. Values for
the mode ratio were obtained within 1.8 to 1.25 at a = 20 mm and 1.4 to 1 at
a = 100 mm by four different methods and with hyperbolic decay as the crack
length increases. Except for our solution the three other methods show notable
crack length dependence.
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7. Discussion

As a consequence under pure mode-I and mode-II conditions it seems that our
solution closely agrees with Bao’s numerical model. In contrast under mixed-mode
I/II case some discrepancies were observed, which should be clarified.

According to our formulation the total strain energy release rate was obtained
by a superposition scheme, which incorporates the effect of Winkler-foundation,
transverse shear and crack tip deformation. Interaction between them was neglected.
Note that Steiner’s theorem was considered in the case of the elastic foundation.

Bao’s numerical model provides the larger improvements. In that work the
SCB specimen was treated as the superposition of the pure mode-I DCB and the
pure mode-II ELS specimens. In our previous work [21] it was shown that due
to Steiner’s theorem the elastic foundation behaves differently under mode-I than
under mixed-mode I/II loading condition. Consequently, this effect was ignored in
Bao’s equations.

The refined plate model by Bruno and Greco affirms the significance of
bending–shear interaction. Their model does not provide improved solution for
the mode-II component, whereas our and Bao’s solution show that the mode-II
component should be contributed apart from the simple beam theory.

It should be kept in mind that in the case of the VCCT method the convergence
and accuracy of the solution is not guaranteed due to the singularity nature of the
problem. The results are sensitive to the size and number of finite elements around
the crack tip zone. Furthermore the mesh refinement around the crack tip involves
the increase in the mode-II component.

The problem is that the mode-mixity is difficult to be determined experimen-
tally. It is possible only in some special cases. Such a case is the mixed-mode
bending (MMB) specimen. DUCEPT et al. [23] applied an experimental mode
decomposition technique, which provided similar results as our beam theory-based
formulation. Since this is the only source for experimental mode decomposition all
the models presented here should be applied with caution with respect to the mode
ratio. On the other hand the total strain energy release rate of the mixed-mode SCB
specimen is predicted with similar accuracy by the three different solutions.

8. Conclusions

A comparative study was performed using three different solutions for common
delamination specimens, such as the mode-I DCB, the mode-II ELS and the mixed-
mode I/II SCB specimen. Furthermore the mode ratio was evaluated by the VCCT
method too. Although only the DCB specimen is accepted as a standard tool, the
presented results here would be similar for other types of delamination coupons
too.

The comparison of the results shows somewhat different consequences. If
only pure mode-I or mode-II condition is investigated our and Bao’s solution closely
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agrees. In the model by Bruno and Greco the mode-II component suffers from any
improvements apart from simple beam theory. The most conspicuous discrepancies
were experienced in the case of the mixed-mode SCB specimen. Neither the mode-I
component nor the mode ratio agrees if we compare the results from three different
closed-form solutions. Neither the VCCT method gives mode ratio values close to
any of the mentioned solutions. As a consequence the mode ratio depends on the
technique applied. Apart from this another problem is that the mode ratio can not
be determined experimentally.
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