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Abstract

In this paper, an analytical solution of the Fourier–Kirchoff equation for heat conduction is presented
for an infinite cylinder assuming co-current flow contact with liquid. The solutions are obtained in
non-closed form as an expansion of series and is rearranged into a non-dimensional form.
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1. Introduction

At the formulation of the task the following simplifications were considered. At the
origin of the coordinate system the processed extruded bar enters into the calculation
with an ideal cylindrical shape of radius R and isotropic material properties. (Fig.1)
The bar material at the beginning is uniformly heated and it has an initial temperature
Ts0. Around the bar there is a cylindrical space created by a perfectly isolated
bigger size pipe, where the co-current cooling (heating) medium enters with an
initial temperature Tf 0 and it is in direct contact with the extruded bar. The motion
of the bar is steady and according to the moving piston effect it predetermines the
liquid flow in the cylinder. Inside the solid phase we do not consider heat sources.
During the solution we assume the thermo-mechanical material properties of the
bar material and the liquid (cf , cs , λ f , λs) to be constant, that is independent of the
temperature. The coefficient of heat transfer between the bar wall and the liquid
remains constant too. The heat due to radiation is included in the coefficient of heat
transfer α. The mass flow of the liquid Mf and the bar material Ms does not vary
with time.
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2. Mathematical Formulation of the Problem

Considering the aforementioned suppositions the Fourier–Kirchoff equation of heat
conduction can be transformed into the following term

∂T

∂t
= a

(
∂2T

∂ρ2
+ 1

ρ

∂T

∂ρ

)
. (1)

The initial and boundary conditions are the following ones. The temperature of the
bar and the gas at the entry is constant.

t = 0, Ts = Ts0, T f = T f 0. (2)

The heat exchange on the border between the phases is given by the equation

α
[
T f − (Ts)r=R

] = −λs

[
∂Ts

∂r

]
r=R

. (3)

The gas temperature can be calculated according to the heat balance law

Mscs(Tsc − Ts0) = M f c f (Tf 0 − T f ), (4)

where

Ts

∣∣∣∣
r=R

= Tsp.

The symmetry conditions imply the temperature gradient to be zero on the surface
of symmetry. [

∂Ts

∂r

]
r=0

= 0. (5)

Let’s introduce the following dimensionless variables

Bi = αR

λs
Biot number,

Fo = at

R2
Fourier number,

m = Mscs

M f c f
thermal capacitance ratio of the contact phases

ρ = r

R
dimensionless coordinate, (6)

�s = Ts − Ts0

T f 0 − Ts0
relative temperature difference of the solid phase,
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�sc = Tsc − Ts0

T f 0 − Ts0
average calorimetric relative temperature difference,

�sp = Tsc − Ts0

T f 0 − Ts0
surface relative temperature difference,

� f = Tf − Ts0

T f 0 − Ts0
relative temperature difference of the gas phase.

The heat conduction equation can be combined as follows.

∂�s

∂Fo
= ∂2�s

∂ρ2
+ 1

ρ

∂�s

∂ρ
(7)
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Fig. 1. Solid and liquid phase flux direction.

The heat exchange can be expressed as follows:

1 − m�sc − �sp = − 1

Bi

[
∂�s

∂ρ

]
ρ=1

. (8)

Initial and boundary conditions are the following ones:

Fo = 0; �sp = 0, �sc = 0, (9)

Balance equation
� f = 1 − m�sc, (10)

where the average calorimetric temperature of the solid phase is defined as

�sc = 2
∫ 1

0
ρ�s dρ. (11)
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Fig. 2. Temperature distribution over the cylinder for Bi = 10 and m = 0.2

Utilizing the Fourier method after substitution, the temperature field of the infinite
cylinder can be found in terms of an infinite series as a function of dimensionless
time Fo, coordinate ρ, temperature capacitance ratio m and Biot number Bi.

�s = 1

1 + m
+

∞∑
i=1

−2ki J1(ki)

4m J 2
1 (ki) + k2

i

[
J 2

0 (ki ) + J 2
1 (ki)

]e−k2
i Fo J0(kiρ). (12)

Average calorimetric temperature of the bar also depends on the time Fo, the tem-
perature capacitance ratio m and Biot number Bi.

�sc = 1

1 + m
−

∞∑
i=1

2J 2
1 (ki)

4m J 2
1 (ki ) + k2

i

[
J 2

0 (ki ) + J 2
1 (ki)

]e−k2
i Fo. (13)

The liquid phase temperature depends on the time Fo, the temperature capacitance
ratio m and Biot number Bi as well.

� f = 1

1 + m
+ m

∞∑
i=1

4J 2
1 (ki)

4m J 2
1 (ki) + k2

i

[
J 2

0 (ki) + J 2
1 (ki)

]e−k2
i Fo. (14)

Where the constants k1, k2, . . . kI (which are dependant on the Biot number and
the thermal capacitance ratio of contact phases) can be determined according to the
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following transcendental equation

ki

Bi
= 2m

ki
+ J0(ki)

J1(ki)
. (15)

Fig. 2 shows the dimensionless temperature distribution as a function of the dimen-
sionless radius and the dimensionless time, included into the Fourier number, for
parameters Bi = 10 and m = 0.2.

3. Closure

The presented paper solves the non-stationary temperature field of the infinite cylin-
der at the co-current contact with liquid medium. The derived analytical solution
shows us the dimensionless temperature dependence of the cylinder on the di-
mensionless coordinate ρ, Fourier number Fo, Biot number Bi and temperature
capacitance ratio of both phases m.

4. Used Symbols

a coefficient of temperature conductivity [m2s−1]
M mass flow [kgs−1]
m thermal capacitance ratio of contact phases [–]
R outer radius of cylinder [m]
t time [s]
T temperature [K]
c specific heat [Jkg−1K−1]
α coefficient of heat transfer [Wm−2K−1]
ρ radial coordinate [m]
λ heat conductivity [Wm−1K−1]
� dimensionless temperature [–]

Subscripts

f fluid phase
s solid phase
0 initial value
p variable value on the surface
c calorimetric
0 0-th order
1 1-th order
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