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Abstract

A formal framework for the analysis of Hopf bifurcations in delay differential equations with a single
time delay is presented. Closed-form linear algebraic equations are determined and the criticality of
bifurcations is calculated by normal forms.
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1. Introduction

The aim of this paper is to outline a formal framework for the analytical bifurcation
analysis of Hopf bifurcations in delay differential equations with a single fixed time
delay. We give a general formalization of these calculations and determine closed-
form algebraic equations where the stability and amplitude of periodic solutions
close to bifurcation can be calculated. The given algorithm may be implemented
in symbolic algebra packages (such as Maple or Mathematica).

The bifurcation theory of ordinary differential equations (ODEs) can be gen-
eralized to delay-differential equations (DDEs) through the investigation of retarded
functional differential equations (RDFEs); see HALE & VERDUYN LUNEL [7] for
details. A review of bifurcations in DDE systems is available in the book of DIEK-
MANN et al. [2]. Furthermore, the theorem of normal form calculations has been
recently published by HALE et al. [6]. The first closed-form Hopf bifurcation calcu-
lation was executed by HASSARD et al. [8] in the case of a simple scalar first order
DDE, while Stépán presented such calculations first [14, 15] for vector DDEs.

The result of the Hopf bifurcation algorithm is a first Fourier approximation
of stable or unstable periodic solutions which can be derived analytically as a func-
tion of the bifurcation parameters. However, it is acceptable only for bifurcation
parameters close enough to the critical point, since a third degree Taylor series
expansion of the non-linearity is used in the DDE. These calculations are very com-
plicated, particularly in systems where the centre-manifold reduction is required.
However, in some simple cases it is possible to use computer algebra packages;
e.g., see CAMPBELL & BÉLAIR [1].
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The analytical estimate is useful in many applications, especially when the pe-
riodic solutions are unstable. Analytical studies of Hopf bifurcations in delayed sys-
tems are carried out, for example, on machine tool vibrations by KALMÁR-NAGY
et al. [9] and on voltage oscillations of neuron systems by SHAYER & CAMPBELL
[12].

We note that ENGELBORGHS et al. have recently constructed a Matlab pack-
age called DDE-BIFTOOL [3, 4], which can follow branches of stable and unstable
periodic solutions against a chosen bifurcation parameter. This semi-numerical
method uses the exact form of the non-linearities, hence it provides reliable results
even when bifurcation parameter is far away from its critical value at the bifurca-
tion point. This has been applied for extensive investigation of semiconductor laser
systems; see GREEN et al. [5].

2. Retarded Functional Differential Equations

In dynamical systems with memory the rate of change of the present state depends
on the past state of the system. Time development of these systems can be described
by the retarded functional differential equation

ẋ(t) = G(xt ;µ), (1)

where dot refers to the derivative with respect to the time t , the state variable is
x : R → R

n, while the function xt : R → XRn is defined by the shift xt (ϑ) =
x(t + ϑ), ϑ ∈ [−r, 0]. Here the length of the delay r ∈ R

+ is assumed to be finite.
The non-linear functional G : XRn × R → R

n acts on the function space XRn of
R → R

n functions. For the sake of simplicity, we consider a scalar bifurcation
parameter, that is, µ ∈ R, and assume that G is a near-zero functional in xt for any
µ:

G(0;µ) = 0. (2)

Thus RFDE (1) possesses the trivial solution

x(t) ≡ 0, (3)

which exists for all the values of the bifurcation parameter µ. Since the function
space XRn is infinite-dimensional, the dimension of the phase space of RFDE (1)
also becomes infinite.

For example, one may use a particular form for the functional G and obtain
the equation

ẋ(t) = g

(∫ 0

−r
dγ (ϑ)ρϑ

(
x(t + ϑ)

);µ), (4)

where g, ρϑ : R
n ×R → R

n, g(0;µ) = 0, and the n×n matrix γ : [−r, 0] → R
n×n

is a function of the variation ϑ .
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The measure γ can be concentrated on some particular values:

γ (ϑ) =
(
δ(ϑ)+

m∑
i=1

δ(ϑ + τi )

)
I, (5)

where τi ∈ (0, r], i = 1, . . . ,m, m ∈ N, and the non-delayed term is formally
separated from the delayed terms. Here and henceforward the n ×n identity matrix
is indicated by I. Substituting measure (5) into example (4) results in

ẋ(t) = g

(
ρ0
(
x(t)

)
,

m∑
i=1

ρτi
(
x(t − τi)

);µ), (6)

that is,
ẋ(t) = f

(
x(t), x(t − τ1), . . . , x(t − τm);µ

)
, (7)

where f : R
n × . . .×R

n ×R → R
n and f (0, 0, . . . , 0;µ) = 0, which is the general

form of DDEs with m discrete time delays. For m = 1 we have the form

ẋ(t) = f
(
x(t), x(t − τ);µ), (8)

which we focus on in Section 4.

3. Stability and Bifurcations

According to the Riesz Representation Theorem, the linearisation of functional G
with respect to xt is defined by a Stieltjes integral, that is the variational system of
RFDE (1) is given as

ẋ(t) =
∫ 0

−r
dϑη(ϑ;µ)x(t + ϑ). (9)

Note that it can also be obtained from the example (4) by considering ρϑ(x) = x
and taking the linear part of the function g.

Similarly to the case of linear ODEs, one may substitute the trial solution
x(t) = keλt into Eq. (9) with a constant vector k ∈ C

n and characteristic exponent
λ ∈ C. It results in the characteristic equation

D(λ;µ) = det

(
λI −

∫ 0

−r
eλϑdϑη(ϑ;µ)

)
= 0, (10)

which has infinitely many solutions for the characteristic exponent λ.
The trivial solution (3) of the non-linear RFDE (1) is asymptotically stable

(that is, stable in the Lyapunov sense, too) for the bifurcation parameter µ if all
the infinitely many characteristic exponents are situated on the left-hand side of the
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imaginary axis. Hopf bifurcation takes place at the critical parameter value µcr if
there exists a complex conjugate pair of pure imaginary characteristic exponents:

λ1,2(µcr) = ±iω. (11)

In the parameter space of the RFDE, the corresponding stability boundaries are
described by the so-called D-curves

R(ω) = Re D(iω), S(ω) = Im D(iω), (12)

that are parameterised by the frequency ω ∈ R
+ referring to the imaginary part

of the critical characteristic exponents (11). Since Eq. (10) has infinitely many
solutions for λ, an infinite-dimensional version of the Routh-Hurwitz criterion is
needed to decide on which side of the D-curves the steady state is stable or unstable.
These kind of criteria can be determined by calculating complex integrals around
the characteristic exponents; see [10, 11, 15] for detailed calculations.

We note, when not only one but two pairs of pure imaginary characteristic
exponents (with two different frequencies) coexist at µcr then a co-dimension-two
double Hopf bifurcation occurs as demonstrated by STÉPÁN & HALLER [16] for
robot dynamics and by GREEN et al. [5] in laser systems. In the case, when a
zero exponent and a pair of pure imaginary exponents coexist at µcr then a fold
bifurcation occurs together with a Hopf bifurcation as investigated by SIEBER &
KRAUSKOPF [13] in the case of a controlled inverted pendulum.

There is another condition for the existence of a Hopf bifurcation: the critical
characteristic exponents λ1,2 (11) have to cross the imaginary axis with a non-zero
speed due to the variation of the bifurcation parameter µ:

Re

(
dλ1,2(µcr)

dµ

)
= Re

(
−∂D(λ;µcr)

∂µ

(
∂D(λ;µcr)

∂λ

)−1
)

�= 0, (13)

where the first equality can be verified by implicit differentiation of the characteristic
function (10).

The above conditions (11) and (13) can be checked using the variational
system (9). Contrarily, the super- or subcritical nature of the Hopf bifurcation, i.e.,
the stability and estimated amplitudes of the periodic solutions arising about the
stable or unstable trivial solution (3) can be determined only by the investigation of
the third degree power series of the original non-linear RFDE (1). In the subsequent
section, the type of the Hopf bifurcation is determined. The algorithm will be
presented for (8), i.e., the case of a single discrete time delay.

4. Hopf Bifurcation in Case of one Discrete Delay

The analysis presented in this section is based on the examples in [14, 15]. However,
we carry out the calculations for an arbitrary number of DDEs in a more general
case. Furthermore, the overview below gives general forms for the linear algebraic
equations resulting from the operator formalism.
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Let us consider the non-linear system (8) with one discrete delay τ ∈ R
+ in

the form
ẋ(t) = 
x(t) + Px(t − τ)+Φ(x(t), x(t − τ)), (14)

where 
,P ∈ R
n×n are constant matrices and Φ : R

n × R
n → R

n is an analytic
function with the near-zero feature Φ(0, 0) = 0.

Since we assume that τ > 0, we may introduce the dimensionless time
t̃ = t/τ . Note that the characteristic exponents and the associated frequencies are
also transformed as λ̃ = τλ and ω̃ = τω, respectively. To simplify notation, we
remove tildes, so the rescaled form of equation (14) becomes

ẋ(t) = τ
x(t) + τPx(t − 1)+ τΦ(x(t), x(t − 1)). (15)

Hereafter, we consider the time delay τ as the bifurcation parameter µ. This is
a natural choice in applications where the mathematical models are extended by
modelling delay effects. The calculations below can still be carried out in the same
way if different bifurcation parameters are chosen.

The characteristic function of (15) assumes the form

D(λ; τ) = det(λI − τ
− τPe−λ). (16)

We suppose, that the necessary conditions (11) and (13) are also fulfilled, that is,
there exists a critical time delay τcr such that

λ1,2(τcr) = ±iω, Re

(
dλ1,2(τcr)

dτ

)
�= 0, (17)

while all the other characteristic exponents λk , k = 3, 4, . . . are situated on the left-
hand side of the imaginary axis when the time delay is in a finite neighbourhood of
its critical value.

4.1. Operator Differential Equation

The dimensionless delay-differential equation (15) can be rewritten in the form of
an operator-differential equation (OpDE). In the case τ = τcr we obtain

ẋt = Axt + F(xt ), (18)

where the linear and non-linear operators A, F : XRn → XRn are defined as

Aφ(ϑ) =
{
φ′(ϑ) if − 1 ≤ ϑ < 0
Lφ(0)+ Rφ(−1) if ϑ = 0,

(19)

F(φ)(ϑ) =
{

0 if − 1 ≤ ϑ < 0
F(φ(0), φ(−1)) if ϑ = 0,

(20)
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respectively. Here, dot still refers to differentiation with respect to the time t , while
prime stands for differentiation with respect to ϑ . The n × n matrices L, R, and the
near-zero non-linear function F are given as

L = τcr
, R = τcrP, and F = τcrΦ. (21)

Note that the consideration of first rows of the operators A, F (19,20) on domains
of XRn which are restricted by their second rows, gives the same mathematical
description as shown in [2].

It is possible to prove that the operator A has the same characteristic roots as
the linear part of the delay-differential equation (15), because

Ker(λI − A) �= {0} ⇔ det(λI − L − Re−λ) = 0, (22)

and the corresponding two critical characteristic exponents (17) are also the same:

λ1,2(τcr) = ±iω. (23)

Although the OpDE (18) can be defined for any value of the bifurcation parameter
τ , the calculations are presented for the critical value τcr only, since the subsequent
Hopf bifurcation calculations use the system parameters at the critical point.

4.2. Centre-Manifold Reduction

We present the algorithm of Hopf bifurcation calculation for the general OpDE (18).
In order to do this, let us determine the real eigenvectors s1,2 ∈ XRn of the linear
operator A associated with the critical eigenvalue λ1 = iω. These eigenvectors
satisfy

As1(ϑ) = −ωs2(ϑ), As2(ϑ) = ωs1(ϑ). (24)

Substituting the definition (19), these equations form the 2n-dimensional coupled
linear first order boundary value problem[

s′
1(ϑ)

s′
2(ϑ)

]
= ω

[
0 −I
I 0

] [
s1(ϑ)
s2(ϑ)

]
,

[
L ωI

−ωI L

] [
s1(0)
s2(0)

]
+
[
R 0
0 R

] [
s1(−1)
s2(−1)

]
=
[
0
0

]
. (25)

Its solution is [
s1(ϑ)
s2(ϑ)

]
=
[

S1
S2

]
cos(ωϑ)+

[−S2
S1

]
sin(ωϑ), (26)

with constant vectors S1,2 ∈ R
n having two freely eligible scalar variables while

satisfying the linear homogeneous equations[
L + R cosω ωI + R sinω

−(ωI + R sinω) L + R cosω

] [
S1
S2

]
=
[
0
0

]
. (27)
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In order to project the system to the plane spanned by s1 and s2, and to its comple-
mentary space, we also need to determine the adjoint of the operator A (see [7] for
details):

A∗ψ(σ ) =
{−ψ ′(σ ) if 0 ≤ σ < 1

L∗ψ(0)+ R∗ψ(1) if σ = 0,
(28)

where ∗ denotes either adjoint operator or transposed conjugate matrix.
The real eigenvectors n1,2 of A∗ associated with λ∗

1 = −iω are determined by

A∗n1(σ ) = ωn2(σ ), A∗n2(σ ) = −ωn1(σ ). (29)

It results in the boundary value problem[
n′

1(σ )
n′

2(σ )

]
= ω

[
0 −I
I 0

][
n1(σ )
n2(σ )

]
,

[
L∗ −ωI
ωI L∗

] [
n1(0)
n2(0)

]
+
[
R∗ 0
0 R∗

] [
n1(1)
n2(1)

]
=
[
0
0

]
, (30)

when one uses definition (28). It has the solution[
n1(σ )
n2(σ )

]
=
[

N1
N2

]
cos(ωσ )+

[−N2
N1

]
sin(ωσ ), (31)

with constant vectors N1,2 ∈ R
n having two freely eligible scalar variables while

satisfying [
L∗ + R∗ cosω −(ωI + R∗ sin ω)
ωI + R∗ sinω L∗ + R∗ cosω

] [
N1
N2

]
=
[
0
0

]
. (32)

We define here the inner product (see [7])

〈ψ,φ〉 = ψ∗(0)φ(0)+
∫ 0

−1
ψ∗(ξ + 1)Rφ(ξ)dξ, (33)

which is used to calculate the orthonormality conditions

〈n1, s1〉 = 1, 〈n1, s2〉 = 0. (34)

These determine two of the four freely eligible scalar values in vectors S1,2, N1,2.
The application of (33) results in two linear non-homogeneous equations, which
are arranged for the two free parameters in N1,2:

1

2


 S∗

1

(
2I + R∗

(
cosω + sinω

ω

))
+ S∗

2 R∗ sinω −S∗
1 R∗ sinω + S∗

2 R∗
(
cosω − sinω

ω

)
−S∗

1 R∗ sinω + S∗
2

(
2I + R∗

(
cosω + sinω

ω

))
−S∗

1 R∗
(
cosω − sinω

ω

)
− S∗

2 R∗ sinω




×
[

N1
N2

]
=
[
1
0

]
. (35)
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Note that there are still two free scalar parameters. For example, one may take 1
as the first component of S1 and 0 as the first component of S2; see [1].

With the help of the right and left eigenvectors s1,2 and n1,2 of operator A, we
are able to introduce the new state variables




z1 = 〈n1, xt 〉,
z2 = 〈n2, xt 〉,
w = xt − z1s1 − z2s2,

(36)

where z1,2 : R → R and w : R → XRn . Using the eigenvectors (26, 31) satisfying
(24, 29) and the inner product definition (33), the OpDE (18) can be rewritten with
the new variables (36):

ż1 = 〈n1, ẋt 〉 = 〈n1,Axt + F(xt )〉 = 〈A∗n1, xt 〉 + 〈n1,F(xt )〉
= ω〈n2, xt 〉 + n∗

1(0)F(xt )(0) = ωz2 + N∗
1F(xt )(0),

ż2 = −ωz1 + N∗
2F(xt )(0),

ẇ = ẋt − ż1s1 − ż2s2

= Axt + F(xt )− ωz2s1 + ωz1s2 − N∗
1F(xt )(0)s1 − N∗

2 F(xt )(0)s2,

(37)

that is,

[
ż1
ż2
ẇ

]
=
[

0 ω O
−ω 0 O
0 0 A

][
z1
z2
w

]

+

 N∗

1 F(z1s1 + z2s2 + w)(0)
N∗

2 F(z1s1 + z2s2 + w)(0)
−∑ j=1,2 N∗

j F(z1s1 + z2s2 + w)(0)s j + F(z1s1 + z2s2 + w)


 .
(38)

It shows the structure of OpDE (18) after projection to the plane spanned by s1 and
s2, and to its complementary space.

Now, we need to expand the non-linearities in power series form, and to keep
only those, which result in terms of degree up to three after the reduction to the
centre-manifold. To this end, only those terms are calculated for ż1,2 that have
second and third order in z1,2 and the terms z1,2wi , (i = 1, . . . , n), while for ẇ,
only the second order terms in z1,2 are needed. This calculation is possible directly
by the Taylor expansion of the analytic function F : R

n × R
n → R

n of (21) in the
definition of (20) of the near-zero operator F . The resulting truncated system of
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OpDE (38) assumes the form:

[
ż1
ż2
ẇ

]
=
[

0 ω O
−ω 0 O
0 0 A

][
z1
z2
w

]
+




∑ j+k=2,3
j,k≥0 f (1)j k0z j

1zk
2∑ j+k=2,3

j,k≥0 f (2)j k0z j
1zk

2

1
2

∑ j+k=2
j,k≥0

(
f (3c)

j k0 cos(ωϑ)+ f (3s)
j k0 sin(ωϑ)

)
z j

1zk
2




+




∑n
i=1

((
f (1l)
101,i z1 + f (1l)

011,i z2
)
wi (0)+ (

f (1r)
101,i z1 + f (1r)

011,i z2
)
wi(−1)

)
∑n

i=1

((
f (2l)
101,i z1 + f (2l)

011,i z2
)
wi (0)+ (

f (2r)
101,i z1 + f (2r)

011,i z2
)
wi(−1)

)
1
2

{
0 if − 1 ≤ ϑ < 0∑ j+k=2

j,k≥0 f (3)j k0z j
1zk

2 if ϑ = 0


 ,

(39)

where the subscripts of the constant coefficients f(1,2)j km ∈ R, and the vector ones

f (3)j km ∈ R
n refer to the corresponding j th, kth and mth orders of z1, z2 and w,

respectively. The terms with the coefficients f (3s)
j k0 , f (3c)

j k0 come from the linear

combinations of s1(ϑ) and s2(ϑ), while the terms with coefficients f (3)j k0 and the
zero above them refer to the structure of the non-linear operator F (20).

The plane spanned by the eigenvectors s1 and s2 is tangent to the centre-
manifold (CM) at the origin. This means, that the CM can be approximated locally
as a truncated power series of w depending on the second order of the co-ordinates
z1 and z2:

w(ϑ) = 1

2

(
h20(ϑ)z

2
1 + 2h11(ϑ)z1z2 + h02(ϑ)z

2
2

)
. (40)

The unknown coefficients h20, h11 and h02 ∈ XRn can be determined by calculating
the derivative of w in (40). On the one hand, it is expressed to the second order by
the substitution of the linear part of first two equations of (39):

ẇ(ϑ) = −ωh11(ϑ)z
2
1 + ω(h20(ϑ)− h02(ϑ))z1z2 + ωh11(ϑ)z

2
2, (41)

on the other hand, this derivative can also be expressed by the third equation of (39).
The comparison of the coefficients of z2

1, z1z2 and z2
2 gives a linear boundary value

problem for the unknown coefficients of the CM, that is, the differential equation[
h ′

20(ϑ)
h ′

11(ϑ)
h ′

02(ϑ)

]
=
[

0 −2ωI 0
ωI 0 −ωI
0 2ωI 0

][
h20(ϑ)
h11(ϑ)
h02(ϑ)

]

−

 f (3c)

200
1
2 f (3c)

110

f (3c)
020


 cos(ωϑ)−


 f (3s)

200
1
2 f (3s)

110

f (3s)
020


 sin(ωϑ), (42)
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with the boundary condition

[
L 2ωI 0

−ωI L ωI
0 −2ωI L

][
h20(0)
h11(0)
h02(0)

]
+
[

R 0 0
0 R 0
0 0 R

][
h20(−1)
h11(−1)
h02(−1)

]
= −


 f (3c)

200 + f (3)200
1
2

(
f (3c)
110 + f (3)110

)
f (3c)
020 + f (3)020


.

(43)
The general solution of (42) takes the form[

h20(ϑ)
h11(ϑ)
h02(ϑ)

]
=
[

H0
0
H0

]
+
[

H1
H2

−H1

]
cos(2ωϑ)+

[−H2
H1
H2

]
sin(2ωϑ) (44)

+ 1

3ω




 f (3c)

110 + f (3s)
200 + 2 f (3s)

020

− 1
2 f (3s)

110 − f (3c)
200 + f (3c)

020

− f (3c)
110 + 2 f (3s)

200 + f (3s)
020


 cos(ωϑ)

+

 f (3s)

110 − f (3c)
200 − 2 f (3c)

020
1
2 f (3c)

110 − f (3s)
200 + f (3s)

020

− f (3s)
110 − 2 f (3c)

200 − f (3c)
020


 sin(ωϑ)


 ,

where the unknown constant vectors H0, H1 and H2 ∈ R
n are determined by the

linear non-homogeneous equations


L + R 0 0

0 L + R cos(2ω) 2ωI + R sin(2ω)
0 −(2ωI + R sin(2ω)

)
L + R cos(2ω)




H0

H1
H2


 = −1

2


 f (3)200 + f (3)020

f (3)200 − f (3)020
f (3)110




+ 1

6ω


 (L + R cosω)

(−3 f (3s)
200 − 3 f (3s)

020

)+ (ωI + R sinω)
(−3 f (3c)

200 − 3 f (3c)
020

)
(L + R cosω)

(−2 f (3c)
110 + f (3s)

200 − f (3s)
020

)+ (ωI + R sinω)
(
2 f (3s)

110 + f (3c)
200 − f (3c)

020

)
(L + R cosω)

(
f (3s)
110 + 2 f (3c)

200 − 2 f (3c)
020

)+ (ωI + R sinω)
(

f (3c)
110 − 2 f (3s)

200 + 2 f (3s)
020

)

 ,
(45)

arising from (43). Note that these equations are decoupled in variable H0 and in
variables H1,2.

The above calculation based on (40)–(45) is called centre-manifold reduction,
which is one of the key components of the Hopf bifurcation calculation.

4.3. Poincaré Normal Form

One may solve (45) and reconstruct the approximate equation of the CM by (44)
and (40). Then calculating only the components w(0) and w(−1) of w(ϑ), and
substituting them into the first two scalar equations of (39), we obtain the equations

[
ż1
ż2

]
=
[

0 ω
−ω 0

][
z1
z2

]
+
[∑ j+k=2,3

j,k≥0 a(1)j k z j
1zk

2∑ j+k=2,3
j,k≥0 a(2)j k z j

1zk
2

]
, (46)
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which describe the flow restricted onto the two-dimensional CM. We note that the
coefficients of the second order terms in the first two equation of (39) are not changed
by the CM reduction, i.e., f (1,2)j k0 = a(1,2)j k when j + k = 2. Using the coefficients
of the Poincaré normal form (46), the so-called Poincaré-Lyapunov coefficient can
be determined by the Bautin formula (see [15]):

� = 1

8

(
1

ω

(
(a(1)20 + a(1)02 )(−a(1)11 + a(2)20 − a(2)02 )+ (a(2)20 + a(2)02 )(a

(1)
20 − a(1)02 + a(2)11 )

)

+
(
3a(1)30 + a(1)12 + a(2)21 + 3a(2)03

))
.

(47)

It shows the type of the bifurcation and approximate amplitude of the periodic
solution, so that the bifurcation is supercritical (subcritical) if� < 0 (� > 0), and
the amplitude of the stable (unstable) oscillation is expressed by

A =
√

− 1

�
Re

dλ1,2(τcr)

dτ
(τ − τcr). (48)

So the first Fourier term of the oscillation on the centre-manifold is[
z1(t)
z2(t)

]
= A

[
cos(ωt)

− sin(ωt)

]
. (49)

Note that it is valid with and without tildes, since it only includes the frequency and
the time in the product form ωt = ω̃t̃ . Since x(t) = xt (0) by definition and not too
far from the critical bifurcation (delay) parameter xt(ϑ) ≈ z1(t)s1(ϑ)+ z2(t)s2(ϑ),
the formula (49) of the periodic solution yields

x(t) ≈ z1(t)s1(0)+ z2(t)s2(0)

= A
(
s1(0) cos(ωt)− s2(0) sin(ωt)

)
= A

(
S1 cos(ωt)− S2 sin(ωt)

)
.

(50)

The non-linear oscillations around the equilibrium (3) are well approximated with
this harmonic oscillation when τ − τcr is sufficiently small.

5. Conclusion

We have given a general overview of the algorithm for the Hopf bifurcation calcula-
tion in time delayed systems with one discrete delay. The centre-manifold reduction
has also been carried out in the infinite-dimensional phase space. The calculations
resulted in closed-form linear algebraic equations which can be solved analytically
in systems where the number of parameters is not too large. This formal structure
will make such calculations simpler in a very wide range of applications in future.
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