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Abstract

After the discovery of the 219 (230) Euclidean three-dimensional space groups many interesting
questions have been investigated, e.g. questions related to space filling polyhedra. The goal of this
paper is to illustrate maximal tilings in E3 in the sense of Delaney–Dress symbols, using just a few
barycentric simplex orbits and many symmetries.
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1. Introduction

Assume that a group � acts from the right discretely on a d-dimensional, simply
connected manifold Xd in such a way that one can find a �-invariant cell decompo-
sition. That is, if we denote the set of cells by T , then T = T γ := {Aγ : A ∈ T }
holds for all γ ∈ �. The elements of T are the so-called cells. Every point of Xd

belongs to at least one tile and no two tiles have an inner point in common. The
points of Xd , belonging to exactly two tiles, constitute the (d − 1)-hyperfaces, or
facets of T . By intersections we consequently define (d − 2)-faces, . . . , r-faces,
…, 1-faces or edges, then 0-faces or vertices, as usual for compact (topological)
d-politopes. The above pair (T , �) is called equivariant tiling. In our examinations
the symmetry group � consists of isometries and contains at least d independent
translations, so it is always periodic. In the following we restrict ourselves to
Xd = E3, although the theory also works on any Xd . Since about 1890 it has been
well-known that in E3 there are 230, resp. 219 possibilities for �, depending on
whether one distinguishes the enantiomorphic group pairs or not.

Two tilings (T , �) and (T ′, �′) will be considered equivalent if they are topo-
logically equivariant (homeomeric). It means that there exists a homeomorphism
ψ that maps T onto T ′ preserving all incidences of tiles, faces, edges and vertices
such that ψ−1�ψ = �′.

Now we define the formal barycentric subdivision of T in the usual way:
For every r-dimensional constituent of T (r = 0, 1, 2, 3) we choose an interior
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point, called r-center of T . Consider a fixed tile, one of its faces, an edge lying
on it, finally an incident vertex. These four centers form the vertices of a three-
dimensional simplex. Other sequence of r-centers leads to other simplex in the tile.
Using the method for every tile we finally get the barycentric subdivision made
up by simplices called chambers. The chamber system is denoted by C. Every
chamber has an i-face opposite to its i-vertex (i ∈ I := {0, 1, 2, 3}). It is obvious
that for every chamber C1 ∈ C there exists exactly one chamber C2 such that their
i-face is common. In this case we say that C1 and C2 are i -adjacent or i -neighbors.
These adjacencies imply the so-called adjacency operations σi (for i = 0, 1, 2, 3):

σi : C → C, C 	→ σiC

that maps every C ∈ C onto its i-neighbor.
The adjacency operations form a free Coxeter group:

	I := 〈σi

∣∣1 = σiσi = σ 2
i : i = 0, 1, 2, 3〉

that acts transitively from the left on C, if � acts from the right, by our convention.
Note that the chamber systemC can always be constructed in a way compatible

with the action of � on T , and suppose in the following that this is the case. Take
a chamber C ∈ C and form its orbit by �:

C� := {Cγ : γ ∈ �} .
LetD := C/� be the set of different chamber orbits under � and let Dk be any orbit
(1 ≤ k ≤ n, the number of orbits). Any γ ∈ � maps i-neighbors onto i-neighbors,
hence the operations σi commute with � on C, for any i . Thus we can introduce
the concept of i-adjacencies of Dk’s: Dj and Dk are i-adjacent or i-neighbor iff for
any C j ∈ D j there exists Ck ∈ Dk such that Ck = σiC j holds.

The set D and the mappings σi define a finite, connected, four-colored graph
in which the nodes refer to the orbits and two nodes are linked by an i-colored edge
(i = 0, 1, 2, 3) if the corresponding orbits are i-neighbors. Such a graph is called a
Delaney–Dress graph (diagram) or shortly D-graph. Of course, D = σi D is also
possible, in this case we get an i-loop.

For short Dk will simply be denoted by k in the following.
Let us introduce a matrix function

(
mij

) : D → NI×I in the following way.
For any D ∈ D let

mij (D) := min
{
m

∣
∣ (σ jσi

)m
C = C, C ∈ D ∈ D

}
, (0 ≤ i ≤ j ≤ 3).

It is easy to see that in a tiling this function has the properties 1–5:

1. mii (D) = 1;
2. mij (D) = m ji(D);
3. mij (D) = mij (σi D) = mij (σ j D);
4. mij (D) = 2, if |i − j | > 1;
5. mij (D) > 2, if |i − j | = 1 in the usual tilings.
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A pair (D; m), consisting of a finite, connected, colored D-graph and the
matrix function fulfilling the properties 1–5, is called a Delaney–Dress symbol, or
shortly D-symbol.

Two D-symbols (D; m), (D′; m ′) are called isomorphic if there exists a bijec-
tion π : D → D′ (called D-isomorphism) such that σk (Dπ) = (σk D)π moreover,
m ′

i j (D
π) = mij (D) hold for any D ∈ D, 0 ≤ k ≤ 3, 0 ≤ i ≤ j ≤ 3.

Any surjective mapping ψ : D → D′ is called D-morphism if it satisfies the
following conditions: |D| ≥ |D′|, σk

(
Dψ

) = (σk D)ψ , and m′
i j

(
Dψ

) = mij (D)
hold for any D ∈ D, 0 ≤ k ≤ 3, 0 ≤ i ≤ j ≤ 3.

A tiling (T , �) is a maximal one if � = AutT , viz. the symmetry group is
the set of all automorphisms of T as incidence structure of faces.

A maximal tiling (T , �) has essential role because it can be considered as a
representant of a family of tilings, where its D-symbol (D; m) is D-morphic image
of a D-symbol (D′; m ′) of any member (T ′, �′) of the family. Then any member
of the family is called a symmetry breaking of the maximal representative tiling
(T , �). In this case there is a homomorphism ϕ between the tilings (T ′, �′) and
(T , �) such that ϕ : T ′ → T and ϕ−1�′ϕ ⊂ � hold.

The following basic lemma provides the advantages of D-symbols in relation
to classification problems:

Lemma 1 Two tilings (T , �) and (T ′, �′) are equivariantly equivalent (home-
omeric, or lying in the same homeomorphism equivariance class), if and only if the
corresponding D-symbols (D; m) and (D′; m ′) are isomorphic [3]. �

Analogously as before, we can introduce other matrix functions r and v:

r : D → NI×I , ri j (D) := min
{
r : (

σ jσi

)r
D = D

}

for any D ∈ D, (0 ≤ i ≤ j ≤ 3); and

v : D → NI×I , vi j (D) := mij (D)/ri j (D),

where the above division is meant for the elements of matrices.

The theory of D-symbols has been elaborated for 2-dimensional tilings in
details (see e.g. [3], the list of references in [1], [2]), however, beside results (e.g.
[4], [6] and their references) there are a lot of open questions in higher dimensions.

2. Building Blocks of Space Fillings

The main goal of this paper is to present figures of simple constructions of space
tilings in the sense that we shall have just 5 barycentric simplex orbits (with other
words for the cardinality of the D-symbol |D| = 5 holds) and we deal just with
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maximal tilings. Therefore we shall have very symmetric constructions of simple
objects.

If somebody wants to make such tilings, the starting point is to determine the
corresponding D-symbol. Firstly its D-graph is to be constructed as a connected,
four-colored graph satisfying some conditions concerning the adjacency operations.
It is important that the matrix function r inherits the properties 1–3 of m and ri j (D) =
1 or 2, if |i − j | > 1. In [1] we have developed an algorithm which allows to derive
D-graphs of arbitrary dimension and elements. In that publication we gave the
complete enumeration of three-dimensional D-graphs of cardinality five as a result
of a concrete computer program.

To make a D-symbol complete we need a matrix function m, where the
corresponding tilings might be realizable in different homogeneous spaces (for
more details see [6]). It would be difficult to find, just in a pure geometric manner,
those values by which we get Euclidean tilings, although one can formulate at
once necessary conditions using the two-dimensional subgraphs of the D-graph in
question. Despite the lack of useful geometrical ideas the problem of determining
those matrix functions that allow Euclidean tilings was solved by an algebraic
topological approach by Olaf DELGADO–FRIEDRICHS in his doctoral thesis [2].
By the help of a sophisticated algorithm and its implementation he could list the
Euclidean Delaney–Dress symbols up to cardinality ten. In Appendix A in [2] we
can find nine possibilities for |D| = 5, but we immediately exclude from the further
investigation the case no. 222. 77, where – unlike in ordinary tilings – at some
vertices of a tile only two faces meet.

In the other eight cases we first identified the corresponding D-graph by
reading off the adjacency operations from the given involutive permutations. The
D-graph itself contains information about the number of transitivity classes of tiles,
faces, edges and vertices; e. g. omitting the σi operation in the D-graph the number
k of the remaining connected subgraphs implies that we have k transitivity classes
of i-dimensional centres. Moreover, if we consider those connected subgraphs that
contain just i and i + 1 colored edges, we know which orbits have the same mi,i+1
values and which differ. In [2] the values of the function m are given in three
comma-separated groups ordered for the simplex orbits by their smallest number.
The given numbers characterize the following: the values m01 refer to the types of
faces (e. g. 3 means triangle faces), m12 says how many faces of a tile meet at the
vertices, while m23 informs us about how many tiles surround the edges. (The other
values of m are fixed by the properties 1–5.)

Knowing these data, the construction of the simplices becomes possible. First
in a topological sense, by adjacencies we can glue them together, forming the sim-
plex orbits and building up the tiles from the fundamental domain of the corre-
sponding space group [5]. One can easily find the necessary angles and distances
and reconstruct the building blocks.

In the following we show the tiles of the eight maximal Euclidean tilings with
five barycentric simplex orbits. For every case we also represent the fundamental
domainF with the corresponding face identifications. Beside them the space group
� will be given as well. That is, by the Poincaré algorithm the face identifications
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Table 1. Euclidean D-symbols of elements five
(extraction from [2])

D-graph by adjacency Values of m i,i+1 Number of tiling Space group
operations σ0, . . . , σ3 type

σ0=(1)(2)(3)(45) 333, 333, 644 45. 2 Fm3m
σ1=(1)(2)(34)(5) 333, 363, 333 45. 3 F43m
σ2=(1)(23)(4)(5) 333, 433, 633 45. 7 Fm3m
σ3=(12)(3)(4)(5) 336, 433, 344 45. 12 Fm3m
(1)(2)(3)(45), (1)(2)(34)(5), 333, 34, 36 54. 2 Fd3m
(1)(23)(45), (12)(3)(4)(5) 333, 44, 34 54. 4 Im3m
(1)(2)(34)(5), (1)(23)(45), 34, 34, 36 222. 2 P6 3/mmc
(12)(3)(4)(5), (1)(25)(34) 44, 34, 34 222. 52 I4/mmm

F for generators with the defining relations as edge-equivalence classes allow us
to determine the symmetry group as a factor group of some free group (for more
details see [5]).

Fig. 1. a. A tiling of regular octahedra and tetrahedra by � = Fm3m.
b. The fundamental domain is O2 M2C D. The face pairings are here just reflections
in the faces of this tetrahedron (reflection simplex).
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Fig. 2. a. A tiling of two types of blocks. For the first one take a regular octahedron
ABC DE F and let build quarters of regular tetrahedra on four of its faces (top: front
and back, down: left and right), while the second block is a regular tetrahedron.
The symmetry group is � = F43m.
b. The corresponding fundamental domain is a reflection simplex O 1 O2 AG, again.

Fig. 3. a. A tiling of regular octahedra and quarters of regular tetrahedra by � = Fm3m.
b. The corresponding fundamental domain is O 1 O2 F A, a reflection simplex.
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Fig. 4. a. A tiling of truncated cubes and regular octahedra by � = Fm3m.
b. The reflection simplex O1 O2 M1 A serves as fundamental domain.

Fig. 5. a. The tiling consists of two types of tiles. For the first one take a regular triangle
(A1 B1C1), rotate it with π and lift it till the triangle faces of the deformed octahedra
(e. g. AB1C1) would halve any regular tetrahedron built on the regular triangles.
The second block is a regular tetrahedron. The corresponding group is Fd3m.
b. The corresponding fundamental domain is O 1 O2C1 A. The generators are a
twofold rotation r : O1C1 A → O1 AC1 and reflections in the other three faces.
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Fig. 6. a. A similar tiling to the previous one, except that we have regular octahedra instead
of tetrahedra. � = Im3m.
b. The corresponding fundamental domain is O 1 O2 AB, with the following face
identifications: a twofold rotation r : O1 AB → O1 B A and three reflections in the
remaining faces.

Fig. 7. a. A tiling with regular trigonal prisms. The rectangle faces should be considered
as two congruent complanar faces. The corresponding group is P6 3/mmc.
b. The fundamental domain is a trigonal prism ABC DE F , the generators are plane
reflections in its faces.
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Fig. 8. a. A tiling with square based prisms, similarly as before. � = I4/mmm.
b. The fundamental domain is a trigonal prism ABC DE F , the generators are plane
reflections in its faces.

3. Closing Remark

Since the maximal Euclidean Delaney–Dress symbols are known for |D| ≤ 10
[2], the construction of space filling polyhedra of all pairs (T , �) with up to ten
barycentric simplex orbits would also be possible. By symmetry breakings other
nice, less symmetrical constructions could be formed, as well.
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