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Abstract

In this paper we shall give a recursion and a new explicite formula for some functions connected with
the weight distribution of the second-order Reed-Muller code. We define some new subcodes of it
and determine their information rates, respectively.
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1. Definitions and Lemmas

Ifu=(uy,---,uy)andv = (vq, - -+ , vy) are two vectors then denote by | U | v |
the vector (Uy, - -+ , Uy, vy, - - - , vp)) Of length n + m. We shall use Theorem 2 of
Ch.13.83 in [2] which says the following:

Theorem 1
R2,n+1)={lulu+uv| whereu € R(2,n), v € R(1,n)},
where R(1, n) denotes the first-order Reed-Muller code of length 2.

Let EG(n, 2) be the Euclidean geometry of dimension n over GF (2) and let
H be a subset of EG(n, 2). Denote by [H] the incidence vector of the subset H so
[H]is a (0 — 1) vector of dimension 2" indexed by the elements of EG(n, 2), for
which:
1 ifaeH,
[H]a:{ 0 ifagH.

We shall say that H ¢ EG(n, 2) is a codeword of R(2, n) if and only if [H] €
R(2, n).

Lpartially supported by Hung. Nat. Found. for Sci. Research (OTKA) grant no.T038397 (2002)
and by the J.Bolyai Fellowship (2000)



32 A. G. HORVATH

Definition 1 (of the codes R¢«(2,n)) Let V; < Vo, < --- < V, be a nested se-
guence of subspaces of the geometry EG(n, 2), for which dim \{ = k. We define
the code R«(2,n) (k = 1,...,n) as the set of all codewords H ¢ EG(n, 2) of
R(2, n) which satisfy the condition:

| HNV = 2Kt

It is clear that this definition depends only on the dimension k, because a regular
linear transformation of the space EG(n, 2) induces a bijection of the code R(2, n)
onto itself.

Remark 1 First of all the results of this paper enlarge the aspect of the very im-
portant code R(2, n) though the necessity of examination of the codes defined
above arose immediately in the theme ‘ Geometry of numbers'. In the works []
and [6] the author defined some new N-dimensional point-lattices with a ‘lot of

O(23109* N+log N}y minima’ . These constructions are based on the method of Barnes
and Wall (see [4]) and the setting up of the second-order Reed—Muller code. De-

note by A'z’;'fl the number of codewords of the code R((2, n) and let A';k,l be the
number of codewords of weight 2~ in R(2, k). By Theorem 1 we can determine
the connection of the numbers A’Z‘;‘fl and A'Z‘H, S0 we now prove Lemma 1:

Lemmal e
ALK, = Ak 20T,

Proof. Let k be a fix number for which 1 < k < n. It is clear that the equality
A'Z"k'fl=A%k,l holds. Regard now the code R((2,k + 1). From Theorem 1 we get
that a codeword in R¢(2, k + 1) has the form | u | u+v |, where u € R((2, k), and

v € R(1, k). But the number of codewords of R(1, k) is equal to 2+(1) 50 we
have the equality:

kktll’k = Algkfl 21+(|I)-
Similarly, the codewords in R¢(2, k + 2) have the form
l[ulu+uv|llulu+ov|+wl,

where U [U+v | € R(2, k+ 1), and w is an arbitrary element of R(1, k + 1). For
this reason we get that:

ktzk _ A';k7121+(§)21+(k11),

Since we can continue these conversions in this way, we proved the statement of
our lemma:

Agl’(lil — Alz(klzjgk(l+(i)) _ Algkilz(n;rl)i(k;rl) ‘
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Remark 2 It isobvious that the condition of the definition can be replaced by
IHN V| =1,
wherei isa possible weight of a codeword in R(2, k). Thuswe havei = -1 or

i = 2k-1 4 2k-1-3 where0 < § < [g]. If A is the number of codewords of weight
i in R(2, k) then the number of codewords of the new code R; (2, n) is equal to

AP = 2(EH=(5) Al

From Theorem 8 of Ch.15.82 in [2] we know the number A'Z‘H. This formula is
the following:

2 k k-1 K—28+1
Kol (9+() _ N paesn @ D@ 1)@ -1
Fao =2 Z ? M -1 -1.--(4-1)

§=1

The expression is rather complicated, but it can be simplified by a deeper investi-

gation of the generator function g (x):

(51 K K=1 _ qy... (ok=25+1 _

gy =Y e @ - DE D Do
(45 —1)4-1—1)..-(4—1)

§=1
So with this notation we get that
A =200 — gy - 2.

Lemma 2
gD =20 —1.

Proof. Ifk = 2, 3 or 4, the equality holds trivially. At the same time the right hand
side satisfies the following recurrence relation:

T = 2T 4+ 21 — 1),

where Ty is equal to 2() — 1. We prove that this relation holds for the left hand
side, too. Now, let Ty be the following sum:

K
2] (2k _ 1) . (2k—25+l _ 1)

T. = 28(871)
k ; @ _—1)-.-(4—1)




34 A. G. HORVATH

Then
Tk _ (2kfl . 1)
_ (2% —1)(21 - 1) 1 5] s 2K — 1)... (2241 _q)
= -1 - 1)+322:2 T
Yt (B YC e (it V(C i 1 C
B 4-1 @ _1)G—1)
— — [5 Ky B
B (2k71 B 22) (2k 1_ 1)(2k 2 _ 1) Z 256-1) (2 1)-- (Zk 254+1 1)
4-1 5=3 #-1---(4-1
_ k-1 @t -1y 22 -1 L2 (K1 — 1)(2K-2 — 1)(2K3 — 1)(2k4 — 1)
B [ 4-1 @ _1)@4-1 ]
Lkt @ oD@ - DT - D@ )
42 -4 -1
(2 ) (2k728+1 _ 1) -
§(8—1) _ el
+ZZ 0. @-1 - = 2Ty 1.

So we have the same recurrence relation for the two sides, therefore Lemma 2 is
proved.

2. Recurrence Relation for the Numbers A'z’;'fl
First we introduce the 4-ary Gaussian binomial coefficients [$]:

—1,

s] @ -D@t-1).. @0 1)

S @ -D@ -1 (4-1)

(Here siis a real number.) Denote by [§] the following product:
Bl=@ —D@1-1)...@4-Dfor[s]=1,2,....

The basic properties of these coefficients can be seen for example in P]. With these
notations we can write the expression of g(x) in the form:

k=1
g (X) = Zzw ”[8][ ][ ]

, §=12,....
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In this section we shall prove the following theorem:

Theorem 2 The recurrence relations
i0 g () = 209 — 241 — @91 — 1)g(a);
ii: 2KALK, = (2 — 1) [2<”¥1>+1 - A’z‘tzl]

are valid for each k > 4.

Proof. We define Tys = 0for§ < 1and § > [g], moreover in the case of
1<é< [g] let Ty s be given by the following expression:

oo TErist
Tes =2°07V871 2| 2.

Now assume thatk > 4and 1 <§ < [%] — 1. Then we have the formulas:

kqrk=1
Tis = 27070 [a]m }

Tsin = 2°0T0[8 + 1]

Ticrros1 = 278 + 1]

At this time we know that

(%271 kN5 4+ Tesps =
5640 22k72871 _2kfl kqrk=1 k k=1
:2 + 5 1 2 2 2 2 )
o+ ]< 25 @1 1) [5][ 5 ]+[6+1][6+1]>

25— _ _ k_
22k 26—1 _ 2k 1 k251 2k 25 _ 1 _ k—25—l42 5 _ 1
225 (45+1 — 1) - 49+1 1 45+ —1°
so we have the equality:

But

(%271 _ RN T s+ Tesna

1 wasa| 5 5t 5 ot
:28(8+)8 1 2—5— 2 2 2 2
CER G I R R S )
5(5+1) 5 k21| 5 et
— 306+ S+1 2 k=25 2 2
sealy 2] (2 T+ [ 1)

k kel
=2°0tD[s 41| 2 2 =T :
[+]5+1 541 k1,541

+
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From this relation we get that

[k+1] [k+1]
kil
a0 = 352 1>[a][ ; ][ } = 3 s

(%54 [*41-1
=T+ Y TewoX =T+ Y Tens X

§=2 6=1

(11
=Tpra+ Y @2 2N Ty 4 Tp X

5=1
CINI
= Tk+1,1X + 22k71X Tk,(g . <Z)
5=1

ISR
— 2k-1y Z Ts - X0 + Z Tisx’.
§=1 §=2

If the number K is even then

k
Ll _125_1: lf -1,
2 2 2
S0 we get that

s =T 2 () 1))

k-1 (]
— 27X O(X) — Tk’[g] XL 4 ge(X) = TiaX
2k—1 X k-1
= 22710 (7) — @ X = DOOO + X[Tesa1 = Tia]
= 2%Ix g <§> — (2 X — D)ge(X) + x(2% — 1)2k L,
Finally, if the number k is odd, we get immediately that
X
Okr1(X) = Tipr1X + 2% xgy <Z) — 27X g (X) + Gk (X) — Ti1X
X
= 2%7Ixgc () — @7 = Dx000 + X[Tirnz = Tl

— 2%-1xg, (2) — (2K — 1)ge(x) + x(26 — 1)2<1,
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. . k+1_ k_
Here we used the precise values of the numbers T,1 1 and Ty ; whichare &—2Z=1

and % respectively. Substitute now the value 4 into this equation. Then

we get the formula:
Okr1(4) = 22T g (1) — (2 — 1)ge(@) + (2¢ — 1)2¢*?
and the first statement of this theorem can be seen from Lemma 2:

k(k—1)

gk+l(4) — 22k+l+T _ 22k+1 _ (2k+1 _ 1)gk(4) + (Zk _ 1)2k+1
— 2%+%+1 _ 2k+1 _ (2k+1 — D) = 2k+l(2%+% -1
— @~ 1ge@) = 2(%) 21— 24T _1)g(a).

Now apply the original formula of A'Z‘k,l. Then we have the equality:

A, =210 —2g,4) -2
= 2(5)+1 (B H g L (9T _9)g,  (4) — 2
= @ = (g1 +1) = —2[207 — 291 (4) - 2]
4o [2(§)+1 — 2G4 (4) — 2] _ o)+
— 20D+ _p()+1 _ ok Akt — 2k _ 1) [2(§)+1 _ Al;;lz],
By virtue of Lemma 2 this means that the following recursive formulas hold:
k
Ass =@ - [20+ - AL,
ALK, = @ = [20H - A
So we proved the statement ii, of Theorem 2, too.

Remark 3 Sncewe know the values of "H inthecaseof k = 1, 2, 3and 4 (these
are 2, 6, 70 and 870, respectively) the other values of the function A, ; = Ayt
can be computed easily by the formula of Theorem 2.

3. Explicit Formula for the Numbers A'z‘k,1

In this section we prove the following statement:
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Theorem 3

2]
Aglllfl = Z (2k — 1) - (2k—28+2 _ 1)2(n;r1)_(k§1)+(k—226+1)+1,

§=1
nTH
Aps= A, = 3 27—y @022 g,
§=1

Proof. Apply the recursion formulas for the function Ag;'fl! Then we get the

undermentioned formula:

k k k-1
nk niny g [(2X—1 2k—121 1
Ajcr = 2()+ {( ok ok ok—1
N <(2k — D — 122 - 1)

2k2k—12k—2
L@@t - 1>) L.

2kok—12k-29k-3
N <(2k —1).-. (2k72l+2 —1) (2k -1 (2k72l+1 _ 1))}

ok ... ok=21+2 ok ... ok=21+1

(2k —1)--- (2k—2|+1 -1 i
ok ... ok=2l+1 A2k72|—la

wherel =1, ..., [%]. Soifk = 2| then

I 21 21-25+42
n,2l ny4 2(2 —D--@ -1
AzzH = 2( 2)* { 22 ... 02-25+1
5=1

2 -1---2-1 .,
22 ... 2 A2*01

and if k = 2| 4+ 1 then
|

N2+ _ o("5)+1 {Z (2241 _ 1)... (22-2+3 _ 7 }

22I+1 . 22I—25+2

§=1
QA1) (22-1) 4
22+1...92 A20 ’

where we used the equalities:

A;bl —2("H-() . Ago —2(MY  and Ar21701 =0.
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Therefore we have got the formulas:

' 20 _qy...(22-25+2 _q
né|2|1 _ 2(n42rl)+l (2 1) (2 )
A2 - Z 2(2I2+1)7(2I—%8+1)

§=1
and
I+1 _
n2l+1 2(n;1)+1 (22|+1 —1)--- (22I+1 28+2 __ 1)
2 o (2|+2)7(2I—25+2) )
§=1 2 2 2
SO

Ak, = Z 2 — 1)@t —1)... @242 _ ) -(PH+(TF
§=1

In the case of k = n we get the simple explicit formula for the numbers An1, too.

4. The Information Rates of the New Codes

Since the code R«(2,n) is not linear, the information rate R is defined by the
quotient:

_ log, A;L‘fl
R¢= o
This is equal to

]

Zi” Iogz< (2% — 1)L —1y... (kB2 1)2("31)(k§1)+(kzz‘s“)+1)_
§=1

n+1
We shall prove that this number is asymptotically equal to (22n ). More precisely
we verify the statement:

Theorem 4 For 1 < k < n the following inequalities hold:

n+1_1 n+1+1
()1 ()1

Proof. Since the upper bound is the information rate of the second-order Reed-
Muller code the second inequality trivially holds. On the other hand the value

]
@K — 1)@ — 1) 2242 gy - () H(TTH
=1

l\)‘+

=<
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can be written in the following form:

n+1 [%] k+1 k—25+1
2("3)+L [ (2K — 1)KL 1y k22 _)p-(9)+(7% )}
§=1
nt1 &2 1 1 1 1
=208 [ <1_§)(1_ﬁ>'”<1_ 2k28+2>2k25+1]'

§=1

Denote by Ly the sum in the bracket. It is easy to verify the following recursive
formula for this number:

1 1 1
Lk: 1—§ F-i_ 1—F Lk_2 .
1

IfkisoddthenL; = % and it can be seen by induction with respect to k that Ly > 3,
because

1 1 1 1 1 1 1 1
bhez\l-%x)|zat -3z | =P %) |z t3 =
(o Ayt ryotr t 1 1
=\t gt x) T T e T =g

If k is even, a similar calculation shows that Ly is greater than or equal to % This
means that

Iog2 21"'(”;1) . % |(')g2 2(%1)*1
> on > on .
So we have proved this theorem, too.
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