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Abstract

Nil geometry is a homogeneous 3-space derived from the Heisenberg matrix group in formula (1),
where the matrix multiplication provides the non-commutative addition of translations. The Lie
theory, combined with projective geometry [1], makes possible to illustrate some phenomena, €. g. the
discrete lattices and the geodesics in Nil. 1think the method, aided by computer, gives new possibilities
in this field [3] in the future.
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1. TheNil Space Modelled in E3 c P?

In studying magnetic fields, Werner HEISENBERG found his famous real matrix
group L (R) whose left (row-column) multiplication by

1 x z 1 a c 1 a+x c+xb+z
<01y><01b>:<o 1 b+y ) (1)
0 0 1 0 0 1 0 0 1

provided a new addition of points (translations)
X,¥,2)*(@,b,c)=(@+x,b+y,c+xb+ 2. 2

Our Fig. 1 (in a Cartesian coordinate system of the usual Euclidean 3-space E)
shows that

(1,0,0) % (1,2,1) = (2,2, 3), ©)

(1,2,1) % (1,0,0) = (2,2, 1),

i.e. thetrangdlations are not commutative, in general.
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The matrices K(z) < L of the form
1 0 z

K(z)a( 1 O)H(O,O,Z), (4)
1

however, constitute the cyclic centre, i.e. each of them is commuting with all ele-
ments of L. The elements of K are called fibre trandations, as well, and they can
be visualized by straight lines, growing out from the points of the (x, y, 0) plane.
Any fibrelineis an orbit of a point (x, y, 0) — (X, Y, z) under the fibre translations
K(z), where z € R is varied.

In the following we consider L as projective collineation group (see [L], but
here) with right actions in homogeneous coordinates as follows

1 X
(1.a.b.c) 1 —(Lx4ay+b z+bx+0). ©)

O
=X ON

The points of Nil will be visualized in E> and embedded into the projective space
P2, where the ideal points (0, u, v, w), with direction vector (u, v, w), will be taken
under the collineations in (5), as well.

Fig. 1. The group L (Z) is not commutative

Any plane u ~ (U, U1, Uy, U3)T, with linear equation for its points (row
matrices) x ~ (x°, xt, x?, x%) ~ (1, X, y, 2) (~ means a freedom up to a non-zero
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R factor), i.e.
Uo
0=xu=x°x%x% x% Ui | =
u
us
x%ug + xtuy + x2uy + x3uz ~ 1ug + XUy + YUy + ZUsg (6)

is described by a linear form u (column matrix, upper T means transposition),
again up to a non-zero R factor. The collineation in () for points induces the
corresponding collineation for planes by inverse matrix (with left action) as follows

Uo 1 —x -y xy—z Uo
Uy 1 0 0 Uy
up = 1 —X u, |- )
Usz 1 usz

Namely, this is the criterion, that any incident point and plane will be mapped under
the collineation onto incident point and plane.

In particular, the horizontal plane pencil u(p) ~ (p, 0, 0, 1)", along the fibre
(1,0, 0, 2) over the origin (1, 0, 0, 0) has the equation for the variable
X0, xt, %2, X% ~ (1,X,V, 2):

Y?’

0= (XX, X% =Y°p+731~p+%=p+z (8)

O OoODT

with any fixed p € R, i.e. we have the intersection point (1,0, 0, —p) with the
fibre.

This plane pencil will be mapped by (7) onto the sloped plane pencil (along
the fibre over (1, X, y, 2))

1 —x -y xy—z p p+Xxy—z
1 0 0 01 _ 0
1 —X 0 | —X ’
1 1 1

i.e. with equation for (x°, X%, X2, X%) ~ (1, X, V, 2)
0=X(pP+xy—2) +X(—X) +X°-1~
X2 X2
Ptxy—z4+ 5=+ 5 1=(P+xy=2+y(=0+2-1. (9)

Now we can extend the translation group L defined by formulas 6) and (7) to a
larger group G of collineations, preserving the fibering, that will be the (orientation
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preserving) isometry group of Nil. We indicate how to introduce the rotation about
the fibre over the origin about angle w by the usual matrix

1 0 0 0
0 cosw Sinw O

0 —sinw cosw O (10)
0 0 0 1
leaving invariant the infinitezimal arc-length-square
(ds)? = (dX)* + (dy)? + (d2)? (11)

as a positive definite quadratic differential form at the origin. By the Lie theory
this will be extended to the rotation about the fibre over any point (1, x, y, 0) by
conjugacy (see (5) and (7)):

1 —x -y xy—-z 1 0 0 0 1 x vy z

0 1 0 0 0 cosw sinw 0O 010 0| _ (12)
0 0 1 —X 0 —sinw cosw O 0 0 1 x |~

0 0 0 1 0 0 0o 1 0 0 01

1 X(1—cosw)+ysinw —xsinw+ y(l —cosw) —x2sinw + xy(1 — cosw)

0 cosw sinw X Sinw
0 —sinw CoS w —X(1 —cosw)
0 0 0 1

Moreover, we have the ‘pull-back transform’

1 —x -y xy—z
0 1 O 0
0 O 1 —X
0 0 O 1

for the basis differential forms at (1, X, y, z) and at the origin, respectively. From
this we obtain the infinitezimal arc-length-square by (L1) at any point of Nil as
follows

(0, dx, dy, dz) = (0, dx, dy, d2) (13)

(dx)? + (dy)? + (—xdy + d2)*> =
(dx)% + (L + x?)(dy)? — 2x(dy)(d2) + (dz)* =: (ds)?. (14)

Hence we get the symmetric metric tensor field g on Nil by components, furthermore
its inverse:

1 0 0 _ 10 0
gij = 0 1+ x? =X s g“‘ = 01 X . (15)
0 —x 1 0 x 14x°

Thus Nil is a homogeneous Riemann space where the arc-length of any piecewise
smooth curve can be computed by integration as usual for surface curves in the
classical differential geometry.
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2. TheDiscrete Trandation Group L(Z)

If we substitute integers, their set is denoted by Z, into the formulas (L-2) or (5)
for X, y, z, then we get discrete group actions whose set will be denoted by L (2),
as integer lattice of Nil.

Fig. 2. A fundamental domain JF for L (Z), representing the Nil space form Nil/L (Z)

As a surprising phenomenon, we illustrate the action of L (Z) on Nil in Fig.2
by a fundamental domain 7/ = OABCDEFGH. We remark that the Euclidean
integer lattice may have a cube as fundamental domain, whose opposite side faces
are mapped under the three generating trandations [2]. Now (5) provides us the
face pairing generators as follows

71 : OBDC =: tflr—>1'1 = AGHE, i.e.

(1,0,b,c) — (1,1,b,c+b) 0<b<1l0<c<l; (16)
72 : OAEC =: rz_lr—> 7, := BFGD;

73: OAGFB =: r;l — 13 := CEHGD.

Here the bent faces z; * and 3 are remarkable. Of course, e.g. the inverse translation
7371t 73 > 75! has also been defined.

These generators induce three L(Z) equivalence classes of edges, each class
provides a so-called defining relation for the generators:
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— {OB, AG,EH,CD}: rlrgrflgfl = 1 (identity map);
— {OA, BF, DG, CE}: rzrgr[lgfl =1;
— {OC, AE, FG,GH, BD} : npnn ', ' =1, (17)

as indicated in Fig. 2. Now we only remark that any relation above can be read
off a standard procedure (Poincaré algorithm, see [2]): The image edge domains
belonging to any edge class amount a complete tubular neighbourhood of each edge
in the class.

The vertices of F also fall into one equivalence class, and the image corner
domains amount a ball-like neighbourhood of each vertex in the class. All these
arguments imply that the fundamental domain F, with face pairing identifications
(), represents a compact Nil manifold or Nil space form, denoted by Nil/L(Z).

The last relation of (17) provides 13 = 1, 'ty 11,71 as a commutator, gener-
ating the centre K(Z) (as in (4)) of L(Z). Substituting 3 into the first two relations
of (17), we get a minimal presentation: o

L) = (18)

—-1_ -1 —-1_ -1 -1 -1_-1_ -1
(un—1l=nnn o unh 7 =0 Lul 0 2 Uul).

Fig. 3. The minimally presenting fundamental tetrahedron 7 for Nil/L (Z)

This minimal presentation has a geometrically realizing fundamental domain7, a
topological tetrahedron with face pairing generators 7 : 7, Yo o, T, Lo

as above (Fig. 3).
This Schlegel diagramhas a coordinate realization, analogously to Fig.2, with
great freedom, but this will be a computer graphic problem to solve later on. We
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have to produce the vertices of 7 with an appropriate starting vertex, firste. g. with
the origin O, then its images as Fig. 3 dictates:

1

0,1:=0%,2:=0%2,3:=1%,4:=12,5:=2% 6:=32 ", 7:= 41,
8:=47 9:=5%2 10:=52  11:=6% , 12:=72 13:=82  (19)

Then we form the edges. An appropriate centre, e. g. the barycentre of the above
vertices of the face 7, ! enables us to form the star-like face rl‘l, indeed. The 7,
image of the former centre also provides the star-like face . Similarly, we can
construct the faces r{l and 7, and the polyhedron 7 by computer. A simplicial
subdivision of 7 can be produced by the barycentre of all vertices in (L9) as a formal
centre for 7.

This new polyhedron type shows how to apply our method in the group theory,
and many new problems arise.

3. Nil Geodesics

We are interested in determining the geodesic curves in our Nil geometry. As
it is well-known, these curves are generally defined as having locally minimal
(stationary) arc length between their any two (near enough) points.

Then it holds a second order differential equation (system)

Y+ y'yITE =0, (20)

where y1(t) =: x(t), Y2(t) =: y(t), y3(t) =: z(t) are the coordinate components
of the parametrized geodesic curves, upper point means the derivation & by the
parameter t, as usual. The Einstein—Schouten index conventions will be applied for
recalling the general theory. Namely, the Levi-Civita connection by

1/09;  0Qi  0Gi
rk — Z( 28 4, 20 73 gk 21
. 2<8y' +8y1 8y'>g @

can be expressed by (14) and (15) from the metric tensor field, by an easy but
lengthy computation. Finally we obtain the system to solve

(i) X4+yy(=x)+yz=0 with  x(0) = y(0) = z(0) =0,
(i) Y+ xyx)+xz(-1) =0, X(0) =ccosa, Yy(0)=csina,
(iii) Z+xy(x® —1) +xz(-x) =0, 2z0) = w, (22)

as initial values. For simplicity we have chosen the origin as starting point, by the
homogeneity of Nil this can be assumed, because of 5) we can transform a curve
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into an another starting point. From (—x)(ii) + (iii) we get the consequence
—yx+2—>'<y=0©;j—t(2—XS/)=0
hence
t
(ivy zZ=w+xysz=w-t —I—f X(7)y(r)dr. (23)
0

Substituting this into (22) (i) and (ii), respectively, we get
(v) X+wy=0, (vi) §y—wx=0. (24)
Then by (v) X + (vi)y we get
()% + (y)> =c® constant,
and
(V) X4+ wy=c-cosa, (vi') y—wXx=c-sina. (25)
Finally, by easy steps, we get the w # 0 solution for (x(t), y(t), z(t)) as follows

C,. . C
X(t) = E[sm(wt +a)—sina], y(t) = —E[cos(wt + o) — cos ],

2 2

C
Z(t) = wt + —t —

St T — (sin(2wt + 2a) — sin 2c) (26)

2

+ z_z[Sin(Wt + 20) — sin 2a — sin(wt)].

Here we can introduce the arc length parameter

s=vc+w?-t,

MOreover,

w=sinfd, c=cosh, —— <0<

: (27)

NS
NS

i.e. unit velocity can be assumed.

We remark that there is no more simple relation among the distance s, and
the coordinates (X, Y, z), as it has been in the Euclidean space.

In other form we obtain the solution

w # 0,

2C wt wt 2c . wt . swt
X)) = —sm7cos< > +a> y(t) = ESIH7SIH<? +a>,
9 . .
zZ(t) = wt - {1 + c [(1 B sin(2wt + 2a) — sin 20() (28)
< Slnz(wi)) < Sln(wfu—:-tZa) —sin 2a>]} _
sm(wt) 12E)tcos(wt) .
= { 02 [( ) o -sin(wt + 201)]}
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as a helix-like geodesic curve.

c=0 leadsto (x,y,2) = (0,0, wt) assolution;
w=0 leadsto x=c-cosw-t, y=c-sina-t, (29)

1 2 H 2
z=Sc*cosasin -t

as a parabola on the hyperbolic paraboloid surface
2-Z— XY =0. (30)

Again, anice computer visualization problem arises: Determinethe sphereof radius
r in the Nil geometry!

Connecting the Sections 2 and 3 of this paper, it is natural to ask for the
densest lattice-like ball packing of the Nil space. Gauss had already solved this
problem in the Euclidean space E2. The face-centred cubic lattice serves the density

\/% ~ 0, 7404805.

Now the general concept of lattice in Nil should be defined first. Then an
optimal ball packing should be constructed, where the ball centres form a point
lattice in Nil and no two balls intersect each other.

The Euclidean analogies can help!?
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