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Abstract

According to well-known methods of standard calculus approximation of smooth functions f :
R

n −→ R
n are usually done by Taylor polynomials of first degree AX + B, where A is the Jacobi

matrix of f at a given point X0 ∈ R
n and B denotes the constant column matrix f (X0)− AX0 ∈ R

n .
However, the number n2 + n of the real input parameters characterizing the map AX + B (which is
considered here as an affine map of En in a given coordinate-system) can be reduced considerably
by using a suitably chosen new coordinate-system. The paper answers also the question how to find
the minimal translation part of any affine map.
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1. Introduction

In order to give an affine mapA : En −→ E
n of the Euclidean space En it is enough

to give the image of a non-degenerated (n + 1)-tuple of points:

(Q0 = A(P0), Q1 = A(P1), . . . , Qn = A(Pn)).

Then the image Q = A(P) of any point P ∈ E
n will be defined on the basis of the

equality

−−→
Q0 Q =

n∑

j=1

x j−−−→
Q0 Q j ,

where x1, . . . , xn ∈ R are the unique coefficients in the decomposition
−−→
P0 P =

n∑
j=1

x j−−→P0 Pj .

Notice that a linear map (endomorphism) α : Vn −→ V n has been induced
on the related Euclidean vectorspace Vn as the images of the linearly independent
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base vectors u j = −−→
P0 Pj have been defined by

v j = −−−→
Q0 Q j =

n∑

i=1

aij ui for j = 1, . . . n,

and so for any u =
n∑

j=1
x j u j ∈ V n

α(u) = v =
n∑

j=1

x jα(u j) =
n∑

i=1

n∑

j=1

aij x j ui

should hold, as well.
The matrix A = (aij ), aij ∈ R for i, j = 1, . . . , n represents the linear part

α of the affine map A with respect to the given base B = (u1, . . . , un), and so the
equality of vectors

BY = −−→
P0 Q = −−→

Q0 Q + −−−→
P0 Q0 = B(AX + Y0)

can easily be translated to the well-known representation

A{P0,B} : R
n −→ R

n

of the affine mapA, with respect to the given affine coordinate-system {P0, u1, . . . ,
un}, by the equation

Y = AX + Y0,

where X, Y and Y0 denote the column matrices containing the coordinates of the
vectors

−−→
P0 P,

−−→
P0 Q and

−−−→
P0 Q0, respectively.

Remark. Throughout this paper also the degenerated case where the vectors α(uj)
= v j for j = 1, . . . , n are linearly dependent, i.e. det(A) = 0, will be allowed, as
well.

2. How to Describe the Given Affine Map A of En in a New Affine
Coordinate-System {P′

0, B′ = (u′
1, . . . , u′

n}?
It has been shown that after having fixed the coordinate-system {P0, B = (u1, . . . ,
un)} the affine mapA can be completely described by n2 +n real input parameters.
In fact, we have to give n2 independent entries of the matrix A and also n independent
entries of the matrix Y0. This statement remains true if the base B = (u1, . . . , un) is
supposed to be orthonormal. From now on, without the loss of generality, we will
restrict ourselves to the use of orthonormal bases. Our aim is to find an orientation
preserving isometry which carries the first coordinate-system {P0, B} into a new
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orthonormal one {P′
0, B′} which may become well adapted to the considered affine

map A.
Let us define first the transition from the original coordinate-system to the

second one by the following relations:

B′ = BR, where R ∈ SO(n)

and

−−→
P0 P ′

0 = BX0,
−−→
P ′

0 P0 = B′ X ′
0,

respectively. Thus

B′ X ′ = −−→
P ′

0 P = −−→
P ′

0 P0 + −−→
P0 P = B(−X0 + X),

B′ A′ X ′ = −−→
Q ′

0 Q = α(
−−→
P ′

0 P) = B(−AX0 + AX),

B′Y ′
0 = −−−→

P ′
0 Q ′

0 = −−→
P ′

0 P0 + −−−→
P0 Q0 + α(

−−→
P0 P ′

0) = B(−X0 + Y0 + AX0),

B′Y ′ = −−→
P ′

0 Q = −−→
P ′

0 P0 + −−→
P0 Q = B(−X0 + Y )

hold and so
R(Y ′

0 + A′ X ′) = Y0 − X0 + AX

holds as well. Using that A′ = RT AR and X ′ = RT (X − X0) the relation

Y ′
0 = RT ((A − I )X0 + Y0)

is obtained.

3. How to Choose the New Origin P ′
0 in Order to Get Minimal Translation?

We are looking for the coordinates (x1
0 , . . . , xn

0 )T of the vector
−−→
P0 P ′

0 = BX0 by the
condition that the norm of the vector

B′Y ′
0 = B((A − I )X0 + Y0)

= x1
0(v1 − u1) + x2

0 (v2 − u2) + · · · + xn
0 (vn − un) + −−−→

P0 Q0

should be minimal.

Case 1 det(A − I ) �= 0 i.e. dim(ker(α − id)) = 0.
As the vectors v j −u j ( j = 1, 2, . . . , n) are linearly independent the equation

x1
0 (v1 − u1) + x2

0 (v2 − u2) + · · · + xn
0 (vn − un) + −−−→

P0 Q0 = 0
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has a unique solution and so Y′
0 = 0, i.e.

−−−→
P ′

0 Q ′
0 = 0.

Case 2 rank of (A − I ) = k < n, i.e. dim(ker(α − id)) = n − k > 0.
Let (

−−−→
P0 Q0)pr be the orthogonal projection of

−−−→
P0 Q0 on the k dimensional

subspace spanned by the vectors vj − u j ( j = 1, 2, . . . , n). However, the set of
solutions of the equation

x1
0 (v1 − u1) + x2

0 (v2 − u2) + · · · + xn
0 (vn − un) + (

−−−→
P0 Q0)pr = 0

is now n − k dimensional (and so there is a certain freedom in the choice of the

new origin P′
0) for the shortest translation we get always the same vector

−−−→
P ′

0 Q ′
0 =−−−→

P0 Q0 − (
−−−→
P0 Q0)pr .

Remark. If
−−−→
P ′

0 Q ′
0 = 0 (i.e. if

−−−→
P0 Q0 ∈ Im (α − id)) the above defined points P′

0
form the set of fix points of the affine mapA, which is an n − k dimensional flat of
E

n . In the opposite case if the vector
−−−→
P0 Q0 does not belong to the subspace spanned

by the vectors v1 − u1, . . . , vn − un the affine map A has no fix point.

4. How to Choose a Well Adapted New Base B′ = (u′
1, . . . , u′

n}?
As a second step the vectors u1, u2, . . . , un should be turned to the unit eigenvectors
u′

1, u′
2, . . . , u′

n corresponding to the real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

of the Gram matrix G = AT A. (The matrix R ∈ SO(n) representing this rotation
has n(n−1)

2 independent entries.)
Then the linear map α : Vn −→ V n turns to be simply a composition of a

rotation represented by an orthogonal matrix R ∈ SO(n) and n axial dilatations
represented by a diagonal matrix D whose diagonal elements are

√
λ1,

√
λ2, . . . ,

√
λn−1, ε

√
λn,

where ε = sgn det(A). In other words the affine map A keeps the orthogonality of
the vectors u′

1, u′
2, . . . , u′

n and their dilatations are described by the non-negative
eigenvalues of the Gram matrix G as it can be proved in the following straightfor-
ward way:

〈α(u′
i), α(u′

j )〉 = 〈B′ A′ Ei , B′ A′ E j 〉 = ET
i (RT AR)T (RT AR)E j

= ET
i (RT G R)E j = 〈u′

i , λ j u′
j 〉 = λ jδi j ,

where Ei , E j are the column matrices containing the coordinates of u′
i , u′

j with
respect to the base B′ and δi j denotes the symbol of Kronecker for i, j = 1, . . . , n.
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5. Final Remarks, Applications

Let f : R
n −→ R

n be a map (vector field) which is differentiable at X0 ∈ R
n .

Then the approaching map g : R
n −→ R

n defined by

g(X) = AX + Y0,

where A is the Jacobi matrix and Y0 = f (X0)− AX0, represents an affine mapA of
E

n with respect to a standard coordinate-system. According to the above described
method it may always be convenient to carry the original coordinate-system into a
well adapted new one. (So the number of characterizing parameters will be dimin-
ished considerably.) This situation is illustrated for example in thermodynamics
where the translation part in the equation V = V0(1 + βt) could be eliminated by
transforming it into the well-known Gay-Lussac equation V = V0

T0
T .
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