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Abstract

In this paper we look for densest ball packings of Euclidean space E3 to given symmetry groups. We
restrict our investigation to the 13 orientable (orientation preserving) crystallographic groups of cubic
system, and we search for only those packings where the group acts simply transitively on the balls.
In order to find the centre of a ball and its radius we will apply an algorithm and the corresponding
computer program, which was developed by the second author [15, 10]. In the list of our results we
will give the coordinates of the ball centre and the radius, moreover, we will compute the density of
the optimal packing and display the corresponding D-V cell for each space group above (see also [9]).
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1. Introduction

In the first third of the twentieth century a lot of new results appeared in physics
with respect to the material science. Applying X-ray diffraction method the crystal
structures were investigated. Much earlier A. SCHOENFLIES [12], E. S. FEDOROV
[4], [5] and L. BIEBERBACH [2, 3] had built the geometric theory of crystals.

In connection with a crystal and the corresponding crystallographic group it
is an interesting and important problem to find the optimal (or densest) ball packing
for this group. The question was raised by U. SINOGOWITZ [11] generalising the
problem of densest lattice-like ball packing. He solved the corresponding problem
in the Euclidean plane (see [11]), however, his three dimensional results (as we
know) have not been published.

The symmetry group of the densest lattice-like ball packing is the crystal-
lographic group Fm3m (no. 225) (this is the complete symmetry group of the
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face centred cubic point lattice), the density is
√

2π/6 ≈ 0.74048. The same
density appears also in cases of some other regular and non-regular ball systems.
Á. G. HORVÁTH and E. MOLNÁR in [7] proved that the density of the optimal ball
packing is also

√
2π/6 for all the ten fixed point free crystallographic groups, and

they determined their structure.
This work is related with a graphic software being in progress by our Depart-

ment to the computer package CARAT, developed by colleagues in Aachen headed
by W. PLESKEN. CARAT and many links to web sites in the topic of crystallo-
graphic groups is available via http://wwwb.math.rwth-aachen.de/carat/. A simple
presentation of planar crystallographic groups and D-V cells can be found in the
site http://www/math.bme.hu/ geom/Pattern2D/Pattern2D. html.

2. Crystallographic Groups and Ball Packings

Let Iso E
3 denote the group of isometries of the Euclidean space E

3 .

Definition 1 Let G be a subgroup of Iso E
3 , and let denote by

XG = {Xg : g ∈ G} ⊂ E
3

the orbit of a point X ∈ E
3 under G. We say that G is a discrete transformation

group of E3 if XG is a discrete point set (i.e. it does not contain any accumulation
point) for all X ∈ E

3 .

Definition 2 The point set F is said to be a fundamental domain of the discrete
transformation group G if the following statements hold:

• F ⊂ E
3 is closed and simply connected;

• F ∩ X G 
= ∅ for all X ∈ E
3 ;

• if X , Y ∈ Int F and Y ∈ XG then Y = X .

In this way the images of F under G tile the space E
3 without gaps and overlaps.

Definition 3 A discrete transformation group G is said to be a crystallographic
group (or shortly space group) if it has a compact (bounded and closed) fundamental
domain F .

Remark 1 Usually the shape of the fundamental domain of a crystallographic
group is not determined uniquely. For example it is also possible that some funda-
mental domain of a group is not bounded, however, the group has also a bounded
fundamental domain. The volume of the domain is finite and determined uniquely
by the group.

In the following let G be a fixed crystallographic group of E3 . We will denote
by �(X, Y ) the distance of two points X , Y .
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Definition 4 We say that the point set

D(K ) = {X ∈ E
3 : �(K, X) ≤ �(K g, X) for all g ∈ G}

is the Dirichlet–Voronoi cell (D-V cell) to G around the kernel point K ∈ E
3 .

Definition 5 We say that

GX = {g ∈ G : Xg = X}
is the stabiliser subgroup of X ∈ E

3 in G.

Remark 2 We can see that the D-V cell is always a convex domain bounded by
finitely many planar faces. Moreover, if the stabiliser subgroup GK of the kernel
point K is trivial, i.e. GK = 1 the identity, then D(K) is a fundamental domain
of G.

Definition 6 We say that N(G) ≤ Iso E
3 is the metric normalizer of the crystallo-

graphic group G if

N(G) = {h ∈ Iso E
3 : h−1Gh = G}.

Namely, h ∈ N(G) if and only if (XG)h = (Xh)G for each point X ∈ E
3 .

Remark 3 It can be proved that N(G) ≥ G is also a crystallographic group if G
belongs to the cubic system, so its fundamental domain can be chosen as a part of
a fundamental domain of G:

FN(G) ⊆ FG.

Definition 7 Assume that the stabiliser GK = 1, i.e. G acts simply transitively on
the orbit of a point K . Then let B(K ) denote the greatest ball of centre K inside
the D-V cell D(K ), moreover let r(K ) denote the radius of B(K ). It is easy to see
that

r(K ) = min
g∈G−1

1

2
�(K, K g).

The G-images of B(K ) form a ball packing BG(K ) with centre points KG. The
density of this packing is

δ(K ) = Vol B(K )

VolD(K )
=

4
3πr3(K )

Vol D(K )
.

It is clear that the orbit KG and the ball packing BG(K ) has the same symmetry
group, moreover this group contains the starting crystallographic group G:

Sym K G = Sym B
G(K ) ≥ G.

Definition 8 We say that the orbit KG and the ball packingBG(K ) is characteristic
if Sym K G = G, else the orbit is not characteristic (n. char).
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3. Finding Optimal Ball Packings

Let G be one of 13 orientable (orientation preserving) crystallographic groups of the
cubic system. The number and the short name of these groups in the International
Tables [6] are as follows:

195. P23, 196. F23, 197. I23, 198. P213, 199. I213,

207. P432, 208. P4232, 209. F432, 210. F4132,

211. I432, 212. P4332, 213. P4132, 214. I4132.

We know that the groups P4321 and P4132 are isomorphic, forming an enantiomor-
phic pair. So their optimal ball packings will be congruent (by a plane reflection),
moreover, the radius of balls and the density of packings will also be equal.

Our problem is to find a point K ∈ E
3 and the orbit KG for a fixed group G

above such that GK = 1 and the density δ(K ) of the corresponding ball packing
B

G(K ) is maximal. In this case the ball packing BGG(K ) is said to be optimal. We
look for the coordinates of K in the coordinate system of cubic lattice (fixed in the
International Tables), the maximal radius r(K ) of the balls, and the density δ(K )
of the packing.

We remark that in the general case when the lattice of the group has more affine
parameters (not only one similarity factor as for the cubic system), the problem of
optimal ball packing can be much more complicated. Then we have to find the
densest ball packing for fixed parameters, and we have to vary them to get the
optimal ball packing. However, the groups considered in this paper belong to the
cubic system, so they have only a similarity parameter.

In earlier papers [13, 14] the second author examined some special groups,
and determined the optimal ball packings without computer. The computations
showed the difficulties of the problem. Having studied these instructive examples
he developed an algorithm for finding the densest ball packing [15], and with Csilla
MÁTÉ they implemented it for computer [10]. By remark 3, the program examines
the points of the fundamental domain FN(G) of the metric normaliser of G, and it
computes the coordinates of an optimal kernel point K with arbitrary precision,
giving also the radius r(K ) and the density δ(K ).

With E. MOLNÁR we developed also a general D-V cell algorithm in [9],
which is able to find the incidence structure of the D-V cell for a point set of
a d-dimensional space of constant curvature. The first author implemented this
algorithm for computer in the case of 3-dimensional Euclidean crystallographic
groups. The program generates the orbit KG of a point K and forms the D-V cell
around K with the appropriate face pairing for a set of generators and the algebraic
presentation of the group G. The program also displays the cell. Listing our results
in section 4 we also publish the corresponding cell to each ball packing in our
figures.

By the above algorithms in [8] we investigated the transitive (not only simply
transitive) optimal ball packings for the crystallographic groups that can be derived
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from Coxeter reflection groups by extension. Our method may be applicable to
examine similar problems in higher dimensional spaces of constant curvature [1].

4. The List of Results with Figures

G = P23 (No.195), N(G) = Im3m, |N(G) : G| = 8;
K (0.207105, 0.207105, 0.5), n.char; r ≈ 0.207105, δ ≈ 0.4465, Fig.1.

G = F23 (No.196), N(G) = Im3m, |N(G) : G| = 16;
K (0, 0.128532, 0.208047), n.char; r ≈ 0.128531, δ ≈ 0.4269, Fig.1.

G = I23 (No.197), N(G) = Im3m, |N(G) : G| = 4;
K (0, 0.186016, 0.300938), n.char; r ≈ 0.186001, δ ≈ 0.6469, Fig.1.

G = P213 (No.198), N(G) = Ia3d, |N(G) : G| = 8;
K (0, 0.25, 0.375), characteristic; r ≈ 0.233854, δ ≈ 0.6428, Fig.1.

G = I213 (No.199), N(G) = Ia3d, |N(G) : G| = 4;
K (0.125, 0.125, 0.375), characteristic; r ≈ 0.176777, δ ≈ 0.5554, Fig.1.

G = P432 (No.207), N(G) = Im3m, |N(G) : G| = 4;
K (0.143086, 0.305938, 0.394492), characteristic; r ≈ 0.15618, δ ≈ 0.3830,
Fig. 1.

G = P4232 (No.208), N(G) = Im3m, |N(G) : G| = 4;
K (0, 0.25, 0.25), n.char; r ≈ 0.176777, δ ≈ 0.5554, Fig. 2.

G = F432 (No.209), N(G) = Pm3m, |N(G) : G| = 4;
K (0.073906, 0.135937, 0.25), n.char; r ≈ 0.109398, δ ≈ 0.5265, Fig.2.

G = F4132 (No.210), N(G) = Pn3m, |N(G) : G| = 4;
K (0.068828, 0.206484, 0.431172), n.char; r ≈ 0.097310, δ ≈ 0.3705, Fig.2.

G = I432 (No.211), N(G) = Im3m, |N(G) : G| = 2;
K (0.128672, 0.128672, 0.310703), n.char; r ≈ 0.128672, δ ≈ 0.428332, Fig.2.

G = P4332 (No.212), N(G) = I4132, |N(G) : G| = 2;
K (0.125, 0.125, 0.375), n.char; r ≈ 0.176777, δ ≈ 0.555360, Fig.1.

G = P4132 (No.213), N(G) = I4132, |N(G) : G| = 2;
K (0.125, 0.375, 0.125), n.char; r ≈ 0.176777, δ ≈ 0.555360, Fig.1.

G = I4132 (No.214), N(G) = Ia3d, |N(G) : G| = 2;
K (0.172852, 0.374805, 0.245573), characteristic; r ≈ 0.125285, δ ≈ 0.395387,
Fig. 2.
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Fig. 1.
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Fig. 2.
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