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Abstract

We present some applications of localization theorems in algebraic topology. The example of the
Grassmannian of 2-planes in 4-space is analyzed in detail.
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1. Introduction

This short note has been written to serve as an introduction for the uninitiated to
the applications of localization theorems in topology. We will not attempt to give
a complete treatment and all the proofs will be omitted. The goal here is to exhibit
the power, and the combinatorial and algebraic complexity of these methods. A
small amount of knowledge of algebraic topology and differential geometry will be
assumed. The basic textbooks on the subject are [8, 6].

2. A Simple Problem of Classical Geometry. A Reformulation

Our toy example will be computing certain quantities in enumerative geometry.
Consider for example, imposing conditions on lines in 3-dimensional complex
space. One could ask:

1. How many lines go through two points?
2. How many lines go through a point and intersect 2 given lines?
3. How many lines intersect 4 given lines?

Naturally, all the given data in the questions are in generic position.
The answer to the first question is clear. The answer to the second is also

easy; it is a little clearer if one poses the dual question: How many lines in 3-space
intersect two given lines and are contained in a given plane? The answer is clearly
1, since the two given lines intersect the given plane in two points, and our line has
to go through these.
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Now the 3rd question is a little more difficult, although any geometer worth
its salt will give you the answer quickly: 2. These numbers are the ones that we
will try to compute in several ways below.

The first idea is that we projectivize our picture: we replace 3-space by 4-
space, and lines by planes going through the origin, etc. Thus we will consider
complex 2-planes in complex 4-dimensional space. This will not change the enu-
merative data and results. Then our enumerative numbers above maybe represented
as intersection numbers on a smooth complex manifold as follows. Consider the
space of all possible planes in 4-space; this is a compact 4-dimensional manifold
Gr(2, 4) called the Grassmannian. Denote by C2(R) the set of planes contained in
a 3-dimensional subspace R, and by C1(P) the set of planes intersecting a fixed
plane P along a line. The indices here stand for the complex codimensions of these
subsets in Gr(2, 4). Then forming the intersection

C2(R) ∩ C1(P1) ∩ C1(P2)

we obtain a finite set of points whose number is exactly the answer to question
2. Since this number does not depend on the particular 3-subspace R and on the
planes, we could informally write C2C2

1 = 1, meaning that the number of elements
of the intersection is one. Such a number is called an intersection number of the
manifold. Note that the 3rd question on our list reduces to computing ∩C4

1 .
The next thing is to introduce the notion of a vector bundle over a manifold

M: this is a smoothly varying family E of vector spaces parameterized by M .
This means, in particular, that E is also a manifold and that there is a mapping
π : E → M such that EP = π−1(P) is a vector space. A section of the vector
bundle E is a mapping s : M → E such that π(s(P)) = P for every P ∈ M .
An example of a vector bundle over M is the tangent bundle T M; a section of this
bundle is called a vector field. Note that for simplicity, we mean here the complex
tangent bundle and holomorphic sections.

It turns out that vector bundles and their sections create a convenient language
to ask general questions about manifolds. Returning to our example, there is a
natural vector bundle E over Gr(2, 4) such that for each point P ∈ Gr(2, 4), EP
is exactly the 2-plane in C4 represented by P . The only section that this, so-called
tautological, vector bundle E has is the one that is zero everywhere, however its
dual E∗, i.e. the family of dual vector spaces, has some interesting sections. Pick
a 3-dimensional subspace R and a nonzero linear functional µ : C4 → C which
vanishes on R. Then for each P ∈ Gr(2, 4) the functional µ restricts to a linear
functional sµ(P) : E P → C , thus µ provides a section sµ of E∗. Now we leave as
an exercise to the reader to check that C2(R) is exactly the set of those planes where
sµ vanishes, while if L = R1 ∩ R2, then C1(L) is the set of those P ∈ Gr(2, 4) for
which sµ1(P) and sµ2(P) are collinear.

3. The First Result: Euler’s Theorem and the Euler Characteristic

With these preparations we can embark on our excursion into localization techniques
of computation of intersection numbers of complex manifolds.
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Let X be a compact complex manifold of complex dimension n, on which a
circle T acts compatibly with the complex structure. The simplest and most basic
example of this setup is the rotation of the sphere by the angle θ :

(z1, z2) −→ (e2π iθ z1, z2).

Here we used the representation of the sphere as the complex projective line; z1 and
z2 are the complex projective coordinates, thus z1z2 �= 0, and (z1, z2) is identified
with (εz1, εz2). Note that projective spaces are special cases of Grassmannians.

Returning to the general case, denote by V the generating vector field on X
for this action. Denote by F the set {x ∈ X | V (x) = 0} of fixed points of the action.
Pick one of the fixed points p ∈ F , and assume that it is isolated. Choose complex
coordinates z1, . . . , zn centered at this point. Then the vector field V vanishes at
the origin, and has the form

V =
∑

j

Ai j (z)zi
∂

∂z j
+ complex conjugate,

where Aij (z) is a holomorphic function near the origin.
Now, if the matrix Aij = Aij (0) is nondegenerate, then we call p a nondegen-

erate fixed point of V . The first theorem in our hierarchy of localization theorems
is the theorem of Euler:

Theorem 1 Assume F is finite, and that each fixed point of the action is nonde-
generate. Then the Euler characteristic χ(X) of X is equal to the number of fixed
points F.

Recall the definition of the Euler characteristic of a manifold. Assume that T is a
triangulation of X with #Ti faces of dimension i ; thus, for example, the number of
vertices will be #T0. Then the Euler characteristic is given by

χ(X) =
n∑

i=0

(−1)i #Ti ,

and this number does not depend on the triangulation T. Thus it provides a topo-
logical invariant of X .

Consider the case n = 1: here it is easy to construct explicit triangulations,
and one has the sphere, with χ = 2, the torus with χ = 0, and, in general, the
sphere with g handles with χ = 2 − 2g. Projecting the sphere on the complex
plane, we can write down (the holomorphic) part of an appropriate vector field as
z ∂

∂z . It is clearly nondegenerate and has appropriately 2 fixed points: one at zero
and one at infinity.

Note that one could also consider the vector field z2 ∂
∂z . This has only one

fixed point, which is degenerate, however. One can extract the same number, 2 that
is, from this vector field as well, but that requires a little more work.
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This listing of the Euler characteristics of 1-dimensional complex manifolds
also points at a limitation of the above theorem. It, essentially, shows that surfaces
with more than one handle do not have any circle actions, since there cannot be a
negative number of fixed points. This problem may be remedied as well (cf. [2]).

4. Bott’s Residue Formula

Now we generalize Euler’s Theorem and find more general topological invariants
of manifolds. To define these, recall that the conjugation-invariant functions on the
set of n-by-n matrices which are polynomial in the entries are in one-to-one cor-
respondence with symmetric polynomials in the eigenvalues, which, in turn, form
a polynomial algebra of the elementary symmetric polynomials: c1, c2, . . . , cn .
Denote the homogeneous degree k invariant polynomials on the n-by-n matrices
by P [k]

n . Then for a compact complex manifold X , there is a characteristic linear
mapping

χ X : P [n]
n −→ C ,

whose values are again topological invariants.. These values are called the charac-
teristic numbers of the manifold X . As an example, consider cn thought of as an
element of P[n]

n . Clearly, cn , being the product of the eigenvalues, represents the
determinant of a matrix, thus we can write cn(A) = det(A). The corresponding
characteristic number turns out to be the Euler characteristic of X . We will not give
the precise meaning of the other invariants, except for a special case to be detailed
below.

Now we are ready to formulate the Residue Theorem of Raoul BOTT [4, 5]:

Theorem 2 (Bott) Assume that V is a holomorphic vector field on a compact com-
plex manifold X with only nondegenerate fixed points. Denote the matrix of the
local form of the vector field around a fixed point p by A(P) as above. Then for
any φ ∈ P[n]

n one has

χ X (φ) =
∑
p∈F

φ(A(p))

det(A(p))
. (1)

This theorem clearly includes Euler’s theorem as a special case: φ = cn . It implies,
in particular, that no matter how one picks the vector field with nondegenerate fixed
points, not only the number of these fixed points, but also the sum on the right hand
side of (1) remains unchanged.

The Residue Theorem has several important generalizations. First, often the
action of T is lifted to a vector bundle E on X . For example, clearly, a linear action
of circle T on the complex vector space C4 induces an action on the Grassmannian
Gr(2, 4) and on the tautological bundle as well, since the points of the tautological
bundle can be thought of lying in C4 .

Assuming the dim E = r , now there is a characteristic map χX,E from the
space of degree n invariant polynomials on r-by-r matrices:

χ X,E : P [n]
r −→ C .
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The values of this map are topological invariants of the bundle E . We will explain
the exact geometric meaning of these values for the case of Grassmannians below.

Then the formula reads

Theorem 3 (Bott) Assume that, in addition to the setup of the previous theorem,
the action of the circle lifts to a holomorphic vector bundle E over X. At a fixed
point p, one obtains then a matrix B(p) representing the infinitesimal action of the
vector field on the vector space Ep. Then for an invariant polynomial φ ∈ P[n]

r ,
one has

χ X,E (φ) =
∑
p∈F

φ(B(p))

det(A(p))
.

Our basic example is that of the complex Grassmannian Gr(r, n) of r-planes in Cn .
This is a complex manifold of dimension r(n − r), endowed with a tautological
vector bundle E of rank r . In this case the geometric meaning of the characteristic
map of the bundle E that we mentioned above may be given in a particularly elegant
form.

Theorem 4 Let F = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = C n ) be a flag of subspaces of C n

with dim Vj = j . Associate to cj , the j th elementary symmetric polynomial in r
variables, the compact subset Cj(F) ⊂ Gr(r, n) of complex codimension j defined
by

C j (F) = {S ∈ Gr(r, N)| dim(S ∩ Vn−r+ j−1) ≥ j}.
Then if

∑r
j=1 jα j = n, then

χ E∗ (∏
c
α j

j

)
= C

α j

j .

A little explanation for the last formula. Since
∑r

j=1 jα j = n, we can expect that
the intersection on the right hand side is of dimension zero, i.e. it consists of a finite
set of points. This may be achieved by choosing different flags for every element
C j . (That would make

∑
α j different flags.) On the right hand side, we identified

the intersection with the number of points in it.
Note that our definition of the subset Cj here is consistent with the definitions

in the n = 4, r = 2 case given earlier. Combined with Theorem 3, this result then
allows us to compute our numbers. Let us see how that goes.

We start with the simpler case of the projective space: r = 1. Since P[n]
1 is

one-dimensional, spanned by the monomial cn
1 , we only need to compute a single

quantity here. According to Theorem 4 this quantity will count the common lines
lying in n generic hyperplanes in an n +1-dimensional vector space. The answer is,
naturally, 1. The localization formula gives something much more complex here.
For simplicity consider the case n = 2. Thus our space is P2, the space of lines in
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C 3 going through the origin. As usual, our space is endowed with a tautological
line bundle L , and canonical injection

i p : L p → C
3 for every p ∈ P

2.

Choosing three integers a, b and c, we can define an action of the circle on C3 by

w · (z1, z2, z3) = (waz1, w
bz2, w

cz3),

where we thought of the circle as being embedded in the complex plane as the
set of numbers of unit length, and w is an element of this unit circle. To apply
Theorem 3, first we need to determine the fixed points of this action. These are,
clearly, the coordinate lines in C3 ; there is 3 of them: p1 = (λ, 0, 0), p2 = (0, λ, 0),
p3 = (0, 0, λ), where λ ∈ C . Next we find the eigenvalues of the corresponding
matrices. The B matrices are of rank 1 here, so they are simply numbers:

B(p1) = a, B(p2) = b, B(p3) = c.

The matrices A(pi ) are of rank 2, and they are a bit trickier to find. The computation
is based on the isomorphism

TpP
2 ∼= Hom(C 3/ ker(i∗

p), L∗
p),

where i∗
p is the dual of the linear mapping ip defined above. The reader is encouraged

to check this isomorphism. Armed with it, it is easy to determine the eigenvalues:
for p1, for example, these are a − b and a − c. The resulting formula for the
intersection number coming from Theorem 3 is

a2

(a − b)(a − c)
+ b2

(b − a)(c − a)
+ c2

(c − a)(c − b)
,

which does not look like it wants to be equal to 1, but it is. In fact, there is an elegant
way to see this: consider the differential form

z2 dz

(z − a)(z − b)(z − c)
;

This has 4 residues: the ones at a, b, c give the above contributions, while the
residue at ∞ is equal to −1. Now applying the residue theorem in the complex
plane we obtain the answer.

The first interesting case is that of Gr(2, 4). Recall that the 3rd question
about the number of lines in 3-space intersecting 4 given generic lines reduces to
computing the intersection number # ∩ C4

1 . Again we consider the action

w · (z1, z2, z3, z4) = (waz1, w
bz2, w

cz3, w
d z4).
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In this case, there are 6 fixed points corresponding to the 6 coordinate 2-planes in
C 4 . At the first of these, at p = (λ, µ, 0, 0), λ,µ ∈ C , the eigenvalues of the
infinitesimal action on E∗

p are a and b, while the eigenvalues on the tangent space at
this point are computed similarly to the case of P2 above. The localization formula
gives the following result:

#C4
1 =

∑
σ∈(4

2)

σ · (a + b)4

(a − c)(a − d)(b − c)(b − d)
, (2)

where the summation is over the 6 different rational fractions which may be obtained
from the one on the right by permuting the symbols (a, b, c, d). Hardened by the
previous example, we are not surprised to find that the sum on the right hand side
is equal to 2, independently from the values of a, b, c, d . It would be interesting to
construct a residue form on a 2-dimensional manifold, which would reproduce the
fact that this sum is equal to 2, using a global residue theorem, just as in the case
of projective case.

We can conclude that the localization formula gives a clear, albeit computa-
tionally somewhat cumbersome procedure for computing enumerative quantities.

5. Localization via Reduction

In this section we give a completely different way of computing enumerative quan-
tities via localization. Here the group will not act on the space of all objects that
we want to consider. Rather, our space will emerge as a quotient by a group acting
on a larger space. We start with the formula of DUISTERMAAT–HECKMAN, which
somehow interpolates between these two points of view.

Unfortunately, it was not possible to keep the discussion on the same ele-
mentary level as in the previous section. Thus our goal was to give a flavor of the
resulting formulas and give some references.

First we need to introduce the more flexible language of differential forms
instead of cycles. Cycles Cr(E) of a vector bundle E over a manifold M are
replaced by Poincaré dual differential forms cr (E). These differential forms are
closed, i.e. dcr = 0. In this language, the intersection numbers appear as integrals
of differential forms: ∏

Cαi
i =

∫
M

∏
cαi

i .

Recall that a symplectic manifold is one endowed with a nondegenerate 2-
form, and that any projective complex manifold is symplectic in a natural way. If
a group acts on such a manifold with a generating vector field V , then there is a
so-called moment map µ, satisfying the property dµ = V ∩ ω, where ω is the
symplectic form.
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Theorem 5 ([7], Duistermaat–Heckman) Let (M, ω) be a symplectic manifold of
real dimension 2n, and let µ : M → R be a moment map of the symplectic action
of a circle on M, i.e. assume that dµ = V ∩ ω. Assume that ω = c1(L) for some
line bundle L. Then

−〈µ + ω, V 〉 −(µ + ω)

−〈µ(p), V 〉 −µ(p)

〈β(p)

i , V 〉 β
(p)

i ,

where the β
(p)

i are the weights of the action on the tangent bundle at p.

Note that the denominator in the formula is essentially the same thing as the de-
nominator of the Bott residue formula.

The Bott residue formula for the volume,
∫

cn
1 , may be obtained by letting V

approach 0 here. For example, for M = P1 we obtain that
∫

ezu d vol = eu − e−u

2u
,

where we think of P1 as the 2-sphere embedded into 3-space the standard way, and
the circle acts via rotations around the z-axis. It is easy to see that the z coordinate
is a moment map; u is a parameter here. Setting u to 0, we recover the answer
from the Bott residue formula for the volume of the sphere. What is interesting
here though, is that we can interpret the LHS as the Laplace transform of the push-
forward measure: if we denote the symplectic quotient by Nξ for ξ ∈ t

∗, then we
can write the LHS as

vol(T )

∫
t∗

e〈ξ,u〉 vol(Nξ ) dξ.

The basic formula of the Laplace transform L{ f }(s) = ∫
R

e−st f (t) dt that is rele-
vant for us is that L{H(t − a)}(s) = e−as/s, where H(x) = (x + |x |)/2. For our
example, this means that the inverse Laplace transform of sinh(u)/u is one half of
the indicator function of the interval [−1, 1]. In this case the volume of T is to be
interpreted as 2, because the square root of the identity acts trivially.

This works in the noncompact case as well, as long as the image of the moment
map is bounded from below. Say the standard action on C gives contribution
eu/u, whose inverse Laplace transform is the indicator function of [−1,∞). In the
multidimensional case, where the µ maps to the dual of the Lie algebra t of the torus,
one obtains a function on the cone of those V ∈ t for which the function 〈µ, V 〉 is
bounded from below, and the inverse Laplace transform can be taken similarly.

The next result, which we will not use in this paper, is the BERLINE–VERGNE/
ATIYAH–BOTT localization theorem [1, 3]. This is a direct generalization of the
DH formula. It uses equivariant cohomology, which is a new ring structure on the
cohomology of the manifold with coefficients in the polynomials on the Lie algebra
of the torus. In this formulation we do not assume isolated fixed points.
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Theorem 6 ([3, 1]) For an arbitrary equivariant class α ∈ H∗(M) ⊗ C [ui ], the
integral ∫

M
α =

∑
C⊂F

∫
C

α

E(NC )
,

where the sum is over the connected components of the fixed point set, NC is the
(equivariant) normal bundle of C in M and E is the equivariant normal class.

Now we generalize the idea mentioned above, which says that the DH for-
mula can be used to compute the volume of the reduced space. Assume that a
1-dimensional torus acts on a symplectic manifold X with moment map µ, and
denote the subquotient µ−1(0)/T by M . The Kirwan map is a map from the equi-
variant cohomology of X to the ordinary cohomology of X , but I like to think about
it in terms of K-theory: as long as the action of T on µ−1(0) is free, every equivari-
ant vector bundle V on X reduces to an ordinary vector bundle Vµ on the symplectic
quotient M . If the action is not free then one needs to take an appropriate twist or
power of V to make sure that the bundle descends.

Theorem 7 ([10, 9]) For each invariant polynomial φ of total degree dim M, we
have ∫

M
φ(Vµ) = n0 Res

u=0

∑
C⊂F+

∫
C

φ(V ) du

E(NC)
,

where F+ is the set of fixed points with a positive value of the moment map, and n0
is the size of the subgroup of the torus which acts trivially.

If the torus is replaced by the group SU(2), the formula remains the same
except for the multiplication by the Weyl factor:

∫
M

φ(Vµ) = n0 Res
u=0

−2u2
∑

C⊂F+

∫
C

φ(V ) du

E(NC )
.

These formulas also work in the noncompact case, when the moment map is proper.
Let us revisit our example of the Grassmannian of 2-planes in 4-space. We

may obtain it by symplectic reduction from W = Hom(C2 , C 4 ) via the group U(2).
Thinking of the elements of W as 2-by-4 matrices S, we see that the moment map
is S∗S if we identify the dual of the Lie algebra u(2) with Hermitian matrices via
the product H �→ −i tr(H ·). Note that the moment map of the torus action only is
the projection of S∗S onto its diagonal. This is a case of a noncompact reduction.
We carry out the computation in a second, but first we do the same with a compact
reduction.

For this we take the 7-dimensional projective spacePW and act on it by SU(2).
Here the moment map is S∗S/tr(S∗S) and we fix its value to be the identity matrix
(this induces the zero functional on the Lie algebra of SU(2)). The fixed points set
consists of two 3-dimensional projective spaces, but only one of them has positive
value of the moment map. The equivariant Euler class of the normal bundle is easy
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to identify: (c + 2u)4, but the classes of the lifts of the characteristic classes c1, c2
are a bit harder. The answer is c2 + 2cu �→ c2 and 2(c + u) �→ c1, which can be
seen from identifying the appropriate bundles. Note that the class c + u does not
descend to an integral class; this is because of the nontrivial action on the fiber of
the tautological bundle of the central element of the group. In our case, n0 = 2,
and indeed we obtain

−4u2
∫
P3

(c2 + 2cu)2

(c + 2u)4
= 1

u
, −4u2

∫
P3

(2c + 2u)4

(c + 2u)4
= 2

u
.

The noncompact version is much more transparent, however. Here, there is
only one fixed point: the origin. A 2-dimensional torus acts now, with weights a
and b. Here the identification is much easier: the Euler class of the normal bundle
is a4b4, a + b �→ c1, ab �→ c2 and the Weyl factor is −(a − b)2/2. Again we have

Res
a=0

Res
b=0

−(a − b)2(ab)2

2a4b4
= 1, Res

a=0
Res
b=0

−(a − b)2(a + b)4

2a4b4
= 2. (3)

Note that this computation is essentially equivalent to the formulas of Sean MAR-
TIN [11].

Thus finally we obtained two rather different formulas, (2) and (3) which
express 2, the number of lines intersecting 4 given lines in complex 3-space. Neither
of these two formulas are easy to compute, but they do give a definite path to the
result and that is what counts!
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