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Abstract

In this paper we consider a two dimensional Wagner space of Douglas type with zero curvature scalar,
and we give the main scalar function of this space.
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1. Introduction

In 1943 WAGNER [1] gave a generalization of the concept of BERWALD space by in-
troducing a new connection with the surviving (h)h-torsion. Recently HASHIGUCHI
[2] established an exact formulation of such a concept based on a theory of Finsler
connections developed by M. MATSUMOTO. Throughout the present paper, we
shall use the terminology and definitions described in MATSUMOTO’s monograph
[3].

Definition 1 Let Fn be a Finsler space with a fundamental function L(x, y), yi :=
ẋ i and let gij (x, y) be the fundamental tensor of Fn . There exists a unique Finsler
connection W�(s) = (Fi

jk, Ni
j , Ci

jk) satisfying the following four conditions. This
W�(s) is called the Wagner connection with respect to si .

(1) It is h- and v-metrical: gij ||k = 0 and g
ij
∥∥k

= 0, where the symbols ‖ and
∥∥∥

mean the covariant derivatives in Fn.

(2) The (h)h-torsion tensor Ti
jk(= Fi

jk − Fi
kj ) is defined by T i

jk = δi
j sk − δi

ks j ,
where si is a given covariant vector field the components of which are func-
tions of position alone.

(3) The (v)v-torsion tensor Si
jk(= Ci

jk − Ci
kj ) vanishes.

(4) The deflection tensor Di
j (= yγ Fi

γ j − Ni
j ) vanishes.
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If we denote by C� = (�∗i
j k, �

∗i
0 j , Ci

jk), the Cartan connection of Fn , the above
Ci

jk of W�(s) are nothing, but those of C� and the difference Di
jk = Fi

jk −�∗i
j k are

given by

Di
jk = L2(Si

jkr +Ci
jsC

s
kr )s

r +(yiC jkr −y jC
i
kr −ykCi

jr)+Ci
jks0+g jksi −δi

ks j , (1)

where si = gij s j and Si
jkr is the v-curvature tensor of C�. Throughout this work

the subscript 0 stands for contraction by yi .

Definition 2 If a Wagner connection W�(s) of a Finsler space Fn is linear, namely
the connection coefficients Fi

jk of W�(s) are functions of position xi alone, Fn is
called a Wagner space with respect to the vector field si(x).

We have many interesting results concerned with Wagner spaces.

Theorem 1 (HASHIGUCHI [2]) A Finsler space is a Wagner space with respect to
a vector field si (x), if and only if the C-tensor Chi j satisfies Chi j‖k = 0 (Covariant
derivative with respect to W�(s)).

M. MATSUMOTO [4] found all the Wagner spaces of dimension two.
In the present paper we shall restrict our consideration to two-dimensional

Wagner spaces so we drop some words about Berwald frame.

The special and useful Berwald frame was introduced and developed by
BERWALD [5], [8]. We study two dimensional Finsler space and define a local
field of orthonormal frame (l, m) called the Berwald frame. We give a normalized

supporting element li = yi

L and another further on let be given the fundamental
tensor with the following equation:

gij = li l j + mim j .

In the present paper we give an example for Wagner–Douglas space in the two
dimensional case, and we determine its main scalar. We will use the following
notions:

l i = yi

L
,

li = ∂̇i L , where ∂̇i = ∂

∂yi
,

hij = L ∂̇i ∂̇ j L ,

gij = li l j + hij .

Since the angular metric tensor hij has the matrix (hij ) of rank n −1, we can define
the vector m = (m1, m2) by hij = εmi m j , ε = ±1. (The sign ε is called the
signature of F2.)
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Then we get

gij = li l j + εmi m j ,

det(gij ) = ε(l1m2 − l2m1)
2.

The C-tensor (Cijk = ∂̇i ∂̇ j ∂̇k(
L2

4 )) has no components in the direction li (Cijk yi =
0). The tensor Cijk is written using the frame (l, m) in the following formula:

LCijk = I mim j mk .

The scalar field I is called the main scalar of F2.
Now we define the covariant differentiations in F2.

Denote by ; , . and |,
∣∣∣ the covariant differentiations with respect to the Berwald con-

nection B�(Gi
jk , Gi

j , 0) and with respect to the Cartan connection C�(�∗i
j k , Gi

j , Ci
jk)

respectively. Then for scalar field S(x, y) we get the following derivations:

S;i = S|i = ∂i S − (∂̇r S)Gr
i ,

S.i = S∣∣i
= ∂̇i S.

We write S|i and L S∣∣i
in the frame (l, m) as follows:

S|i = S,1li + S,2mi ,

L S∣∣i
= S;1li + S;2mi .

(S,1, S,2) and (S;1, S;2) are called the h- and the v-scalar derivatives of S.
The commutation formulæ for scalar derivatives are written in the form{

(1) S,1,2 − S,2,1 = −RS;2,
(2) S,1;2 − S;2,1 = S,2,
(3) S,2;2 − S;2,2 = −ε(S,1 + I S.2 + I,1S;2),

(2)

where R is called curvature scalar of F2.
Finally the Bianchi identities for an F2 reduce to the following identity:

I,1,1 + RI + εR;2 = 0. (3)

As it is well known, the Berwald connection coefficients Gi
j , Gi

jk can be derived
from the function Gi , namely Gi

j = Gi
. j and Gi

jk = Gi
. j.k , where

Gi = 1

4
gis

(
yr

(
∂L2

.s

∂xr

)
− ∂L2

∂xs

)
.

Let us consider two Finsler spaces: Fn(Mn, L) and F̂n(Mn, L̂) on a common
underlying manifold Mn .
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Definition 3 The change L(x, y) → L̂(x, y) of metrics is called projective and Fn

is projective to F̂n if any geodesic of Fn is a geodesic of F̂n as a point set and vice
versa.

Definition 4 A Finsler space is called projectively flat, if it has a covering by
coordinate neighborhoods in which it is projective to a locally Minkowski space.

From Ghjk = Gi
.h. j.k we get a projective invariant Di

h jk called the Douglas
tensor [5], [8], [7]:

D
i
h jk = Gi

hjk = 1

n + 1
(yi Ghj.k + δi

hG jk + δi
j Gkh + δi

k Ghj ),

where Ghj = Gr
hjr and Ghj.k = ∂̇k Ghj . In particular the Di

h jk of a two dimensional
Finsler space F2 can be written in the form [10]:

3LDi
h jk = −(6I,1 + εI2;2 + 2I I2)mhlim j mk, (4)

where
I2 = I,1;2 + I,2.

Thus there arises an interesting question: Can we give the main scalar of a Wagner
space of Douglas type in an exact formula?

2. The Main Scalar of a Special Wagner Space of Douglas Type

Further on we use the following results:
Theorem [8] If Fn is an n-dimensional, projectively flat Finsler space, then

the v(h)-torsion tensor Wh
i j and the projective v(h)-curvature tensor Dh

i jk are zero
identically.

It is a well known result that the Douglas tensor and Weyl tensors vanish
identically in a projectively flat Finsler space [6].

MATSUMOTO proved [7]: Wh
i j = 0 and Dh

i jk = 0 imply:

(1) Hijk = 0 and Kij = 0, if the dimension is higher than two.
(2) The two dimensional case: Hijk = 0, where Hijk = Hi. j.k + G jk;i , Hi =

L(3Rli + R.2mi), and

G jk = I2m j mk/L . (5)

Let us consider a two dimensional Wagner space with vanishing Douglas tensor
with the following assumption R = 0.

From R = 0 we get Hi = 0.
In the case of n = 2, from the theorems above we have Gjk;i = 0.
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Now, using the following formulas:

mi, j = l i
; j mi + l imi; j = 0,

l imi = 0,

l i
i j = 0,

we finally obtain by the help of (5):

G jk;i = I2;i
m j mk

L
, that is I2;2 = 0.

We obtain from (4):
3I,1 + I I2 = 0. (6)

If we use MATSUMOTO’s conditions [4] for the Wagner spaces,

I,1 = I;2s2,

I,2 = −I;2(s1 + I s2),

(s1);2 − s2 = 0,

(s2);2 + s1 + I s2 = 0,

(s1);1 = 0,

(s2);1 = 0,

then we get the following equations:

I;2,1 = I;2;2s2, (7)
I2 = I;2;2s2 − 2I;2(s1 + I s2). (8)

Using by the Bianchi identity the Eqs. (7) and (8) we have:

I;2;2s2 = − I;2s2,1

s2
, s2 = 0. (9)

(If s2 = 0, then a two dimensional Wagner space is a Landsberg space. We know
that an F2 Finsler space is a Landsberg if and only if I,1 = 0 [4].)

Substituting (9) into (8), then from (8) follows

I2 = − I;2s2,1

s2
− 2I;2(s1 + I s2). (10)

Now (6) leads to

I;2(3s2 − 2I (s1 + I s2) − I s2,1

s2
) = 0. (11)

If I;2 = 0, then a Wagner space is a Berwald space [4], [9].
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If we put I;2 = 0, then (11) implies

3s2 − 2I (s1 + I s2) − I s2,1

s2
= 0. (12)

This is a quadratic equation. Consequently the main scalar is written as

I =
−(2s1 + s2,1

s2
) ±

√
4s2

1 + 4s1s2,1
s2

+ s2
2,1

s2
2

+ 24s2
2

4s2
. (13)

In general for the main scalar in (13), I;2 = 0. Thus we have the following:

Theorem 2 The main scalar of a two dimensional Wagner space of Douglas type
with the assumption R = 0 can be given in the formula (13).
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