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Abstract

A surface generation method is presented based on convex combination of surfaces with rational
weight functions. The three constituents and the resulting surface are defined over the same triangular
domain. The constructed surface matches each component along one of its boundary curves with C0

or C1 continuity depending on the weight functions in the combination. The method can be applied
in surface modelling for filling triangular holes.
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1. Introduction

Filling gaps and holes is a crucial problem in surface modelling, and a number of
algorithms are known and implemented based on different concepts.

A classical method is to generate Coons-type surfaces from boundary curves
and derivative values along these curves in order to get a satisfying smooth surface
patch which matches all these boundary data [3]. An essential extension of Coons’
construction is given in [11, 12] using also surface patches as input data instead
of ‘wire-frame’ data. The constituents and the resulting surface are defined over a
rectangular domain and the triangular patches are generated as degenerate rectan-
gular ones. Trigonometric [9, 10], rational [12] and Hermite [11] weight functions
(also called blending functions) have been used and C2 continuous connection to
the surrounding surfaces of the hole has been achieved. A Coons-type scheme of
interpolation is described in [2] from boundary and derivative values of a function
defined on a triangle with rational, trilinear and tricubic blending functions. The
case of first degree rational blending functions can be found also in textbooks [4].

A different concept is frequently used for interpolation to scattered data. First,
the domain of the given points is tesselated into triangles or tetrahedra, then a smooth
function of two or more variables is constructed which assumes given values and
given cross boundary or normal derivatives on the boundary of each triangle or
tetrahedron. A piecewise rational scheme is described in [1] that interpolates to
function and gradient values at vertices of tetrahedra, and is continuously differ-
entiable everywhere in the underlying domain. First, underlying cubic Hermite
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interpolants are constructed on all faces and a convex combination is built with
quadratic rational weight functions.

The further mentioned interpolation methods are developed for a triangulated
set of points. Let V1V2V3 denote a planar triangle, and F(xi , yi ) (i = 1, 2, 3) be
function values at the vertices. In order to get smooth resulting surface, given or
estimated values of the partial derivatives Fx(xi , yi) and Fy(xi , yi) at the vertices
are also used in the interpolations. Let Di [F] be an ‘underlying interpolant’ which
matches position and directional derivative values of F at the vertex Vi and at the
point Si , (i = 1, 2, 3) on the opposite side of the triangle (Fig.1). Methods working
with such functions are called ‘side-vertex’ methods in the literature.

S

(x,y)

V

i

Fig. 1. Side-vertex interpolation

A commonly used combination of the constructed interpolants Di is

3∑
i=1

Wi (x, y)Di [F](x, y)

with the weight functions
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where b1, b2 , b3 are the barycentric coordinates of the point (x, y) [8].
There are several methods for estimating the partial derivatives from the scat-

tered data F(xi , yi) and for selecting the cross boundary derivatives on the triangle
edges which are needed in surface generation. In [5] and [6] such methods are
proposed, and lower degree weight functions

Wi (x, y) = b j bk

b1b2 + b1b3 + b2b3
, i = 1, 2, 3 , i �= j �= k (2)
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are used in the combination of the underlying interpolants.
In [7] linear and cubic Hermite side-vertex interpolants are constructed, and

the weight functions
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or the lower degree counterparts
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are used.
In this paper instead of Coons’ method we shall follow the second ideas based

on convex combination of surfaces.

2. Surface Construction

The filling of a three-sided hole with a surface joining continuously to the surround-
ing surfaces is known as the suitcase corner problem. A number of solutions have
been published already using subdivision algorithms from generated data along the
boundary of the hole or constructing surface patches represented by spline functions
of different types.

The presented surface construction uses convex combination of three surfaces
which are either extensions of the surfaces surrounding the hole, or are constructed
in such a way that each joins smoothly to one of the three given surfaces along one
boundary curve of the hole. Such constructions are described in textbooks, and
they are not the subject of this paper.

Combining surfaces instead of ‘wire-frame data’ yields that not only the
boundary data, but also the shape of these components influence the resulting sur-
face. To the best of the author’s knowledge applying such surface construction for
filling holes is novel in CAD literature.

Let us assume that the differentiable surfaces ri (u, v), (i = 1, 2, 3) are given
over the ‘standard triangle’ � with vertices (0, 0), (1, 0) and (0, 1) in the uv plane.
The three boundary curves r1(u, 0), r2(0, v) and r3(u, 1 − u) = r3(1 − v, v)
(0 ≤ u ≤ 1, 0 ≤ v ≤ 1) have common endpoints, i.e. they form the boundary
of a curvilinear spatial triangle. The barycentric coordinates of the point (u, v) are
b1 = v, b2 = u, b3 = 1 − u − v (Fig. 2).

The investigation of weight functions in convex combinations constructed for
interpolating to scattered data has shown that those in formulae (1), (2), (3) and
(4) are suitable for our purpose. The combination of three constituents with these
blending functions matches the three boundary curves of the curvilinear triangle.
Applying the higher order blending functions in (1) and (3), it matches also the
cross boundary derivatives of the corresponding component along the common
boundary line.



84 M. SZILVÁSI-NAGY

(u,v)

u

v

(0,0) (1,0)

(0,1)

r

r
r

1

2
3

Fig. 2. Triangular parameter domain

Theorem 1 The surface composed from the differentiable surfaces ri(u, v), (i =
1, 2, 3), (u, v) ∈ 	 satisfying

r1(0, 0) = r2(0, 0), r2(0, 1) = r3(0, 1), r3(1, 0) = r1(1, 0)

by the vector function

r(u, v) =
3∑

i=1

Wi(u, v)ri (u, v), (u, v) ∈ 	, (5)

matches the three boundary curves, i.e. r(u, 0) = r1(u, 0), r(0, v) = r2(0, v) and
r(u, 1 − u) = r3(u, 1 − u), u ∈ [0, 1], v ∈ [0, 1]. Wi (u, v) are weight functions
in (1), (2), (3) or (4), and b1 = v, b2 = u, b3 = 1 − u − v are the barycentric
coordinates of the point (u, v).

Moreover, in the cases of the weight functions in (1) and in (3) the corre-
sponding cross boundary derivatives of r(u, v) and the constituents are also equal
along these common boundary lines.

The proof of these statements can be obtained by simple computations and
derivations.

3. Examples

The three surfaces to be combined are generated as quadratic Bézier surfaces over
the triangular parameter domain shown in Fig. 2. The surface r1(u, v) is a curved
triangle with one side in the xy plane and a vertex on the axis z. The surface r2(u, v)
is a planar patch in the coordinate plane xz with one vertex in the origin. The third
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one, r3(u, v) has a boundary curve in the coordinate plane yz and a vertex in front
(Fig. 3).

The first combination has been computed with weight functions in (1), and is
shown in two different projections in Figs. 4 and 5.

In Fig. 6 two extended constituents are also shown together with the generated
surface. The third component is lying in front of the result, therefore it is not drawn.
The tangential connection can be seen clearly.

The use of lower degree weight functions in the combination yields different
shape and only C0 connection to the components along the boundary curves (Fig.7).

In Fig. 8 a surface is shown constructed only from the boundary curves of
the three input surfaces as a convex combination with weight functions in (1).
Comparing the shape with that in Fig. 7, the influence of surface components can
be seen clearly. However, the surface in Fig.7 does not match the derivatives of the
components.

For illustrating the effect of a different surface component with unchanged
boundary data, we replaced the planar surface patch with a narrower one. The
resulting surface is shown in Fig. 9.

Finally, the same surfaces are combined with the weight functions in (3) which
yield C1 connection along the boundary curves (Fig.10).

The computations and the Figs.3–10 have been made by the algebraic program
package Maple.
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Fig. 3. The three input surfaces
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Fig. 4. The resulting surface with blending functions in (1)
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Fig. 5. The same result from a different view
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Fig. 6. The resulting surface and two extended constituents
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Fig. 7. The combination with lower degree weight functions
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Fig. 8. Combination of the three boundary curves
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Fig. 9. Unchanged boundaries with one changed constituent



FILLING TRIANGULAR HOLES 89

2
4
6
8

10
12
14
16
18
20
22
24

2
4

6
8

10

2
4

6
8

10
12

Fig. 10. The surfaces in Fig. 3 blended with functions in (3)
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