
PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 46, NO. 1, PP. 3–14 (2002)

CALCULATION OF THE HYDRODYNAMIC LOAD CARRYING
CAPACITY OF POROUS JOURNAL BEARINGS
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Abstract

This paper is about the calculation of hydrodynamic load carrying capacity of porous journal bear-
ings. Pressure functions were determined and compared to each other to show the differences of
several simplifications, assumptions and boundary conditions. The porous material was assumed
to be isotropic and homogeneous. Four pressure functions were analysed using the short bearing
approximation and one pressure distribution with the infinitely long bearing assumption. The load
carrying capacity and the coefficient of friction were calculated and compared to one another.
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1. Introduction

Porous journal bearings impregnated with oils are widely used in industrial appli-
cations. In many cases they are more advantageous than the non-porous bearings
because they do not need continuous lubrication therefore their structure is simple
and they also reduce costs. Metal porous bearings can work in fluid lubrication
where the rules of operation are determined by the hydrodynamic theory of lubri-
cation. The hydrodynamic theory of porous bearings is not too old, it appeared
about five decades ago. This theory is originated from the hydrodynamic theory of
lubrication of solid bearings with several alterations.

2. The Hydrodynamic Theory of Lubrication

The hydrodynamic theory of lubrication of journal bearings is older than a century.
In his famous experiment Tower has shown first the pressure distribution in the
lubricating oil film in the clearance of journal bearings in 1883. Also in this year
Petroff measured the friction torque of oil lubricated sliding bearings and created
a formula to calculate it. Knowing the results of experiments made by Tower and
Petroff Reynolds evolved the base equation of hydrodynamic theory of lubrication
of journal bearings from the Navier-Stokes equations using many assumptions. The
Reynolds equation cannot be solved in full form therefore it is necessary to make
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some simplifications to get a simple solution. There are two general simplifica-
tions: theinfinitely long bearing (b/d = ∞) and theshort bearing assumption(

∂p

∂z
� ∂p

∂x

)
. In 1902 Sommerfeld solved the Reynolds equation making special

boundary conditions for pressure distribution in tangential direction called accord-
ing to him Sommerfeld conditions resulting a central symmetric solution. In the
practice the often used boundary conditions are the following: the Sommerfeld

(and Gümbel) conditionsp
∣∣
ϕ=π

= 0, the Reynolds conditions
∂2 p

∂ϕ2

∣∣∣∣
ϕ=π

= 0. Us-

ing these assumptions many solutions were achieved during the last century for
static and also dynamic operating conditions. Nowadays, numerical methods are
often used for solving the Reynolds equation can be seen KOZMA [7].

3. The Hydrodynamic Theory of Lubrication of Porous Journal Bearings

The hydrodynamic theory of lubrication of porous journal bearings originated with
CAMERON, [1] who obtained a solution for oil film pressure and load carrying
capacity of finite, full bearings using the short bearing assumption. Later ROULEAU
[2] modified CAMERON’s assumptions and evolved another pressure function. The
slip boundary condition was introduced by BEAVERS and JOSEPH[3]. M URTI [5]
used this slip condition for infinitely short bearings and got an analytical pressure
function with sly mathematical alterations. Later PRAKASH [6], also using the slip
condition, solved the Reynolds equation and got a pressure function in form of
infinite series.

The first pressure function of the oil film in a porous bearing was determined

by CAMERON. He assumed that
∂2 p

∂y2
= constant, and the same pressure is in the

oil film and also in the porous material. He wrote the Reynolds equation of porous
bearings in the following form:

∂

∂x

(
h3∂p

∂x

)
+ ∂

∂z

(
h3∂p

∂z

)
=
(

6ηU
∂h

∂x
+ 12

�

η

∂p∗

∂y

∣∣∣∣
y=0

)
, (1)

whereV = ∂p∗

∂y

�

η
is the Darcy rule, which expresses the flow of lubricants into

the porous materials. Using the clearance functionh(ϕ) = 
r(1 + cosϕ) of a

journal bearing and introducing thepermeability parameter � = H�


r3
he solved the

Reynolds equation with the Sommerfeld boundary condition and got the following
pressure function:

p(z) = 3Uηε sinϕ

r
r3
[
(1 + ε cosϕ)3 + 12�

] (b2

4
− z2

)
. (2)
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(p is marked the only function of z. This is only an agreement because p(z) was
obtained from the Narrow Bearing Condition.)

CAMERON also determined the friction force from the shear stresses in the
lubricant:

Fs =
∫ ∫

A
τ dA, (3)

and got the following formula to calculate the coefficient of friction:

µ = 
r

r

[
4π2r3ηbn

F
r2
√

1 − ε2
+ ε

2
sinβ

]
. (4)

ROULEAU modified CAMERON’s conditions and assumed that the pressure in oil
film and in porous material is different. He thought that
2 p∗(x, y, z) = 0, where
p∗ is the pressure in the porous material. He solved the Reynolds equation using
infinite series and got a pressure distribution in this form:

p = 24ηUb2

π3r
r2

∞∑
n=1

(−1)n+1ε sinϕ cosπβn
z

b

β3
n

[
(1 + ε cosϕ)3 + 12�

b

Hπβn
tanhπβn

H

b

] , (5)

whereβn = (2n − 1).
The coefficient of friction was calculated by ROULEAU using the formula

derived by MORGAN and CAMERON.
Some years later BEAVERS and JOSEPHcreated a new boundary condition

namedslip boundary condition, a schematic view of which can be seen in theFig.1.
g

Porous material

( )u x y z* , ,

Velocity profile

( )u x y z, ,

Solid material

Fig. 1. The torn velocity profile in oil film



6 E. BAKA

The slip boundary condition expresses that there is oil flow in tangential
direction in the porous material. The slip condition can be written in the following
form:

∂u(x, y, z)

∂y

∣∣∣∣
y=0

= α√
�

[UB − u∗]. (6)

This slip philosophy altered the governing equations of hydrodynamic lubrication
of porous bearings. MURTI applied the slip condition for porous bearings and
obtained a pressure distribution for short bearings in analytical form. The velocity
profiles from the Navier-Stokes equations, using the (6) boundary condition, inx
direction

u(x, y, z) = 1

η

[
1

2

∂p

∂x
(y − h)2 + (y − h)

{
1

2

∂p

∂x
h(1 + �1/3) − ηU

h
�0

}]
+ U y

h
, (7)

andz direction:

w(x, y, z) = 1

η

[
1

2

∂p

∂x
(y − h)2 + (y − h)

{
1

2

∂p

∂x
h(1 + �1/3)

}]
, (8)

where

�1 = 3
2α + h√

�

h√
�

(
1 + α

h√
�

) and �0 = 1

1 + α
h√
�

.

So the Reynolds equation with slip condition has the following form:

∂

∂x

[
h3

12η

∂p

∂x
(1 + �1)

]
+ ∂

∂z

[
h3

12η

∂p

∂z
(1 + �1)

]
= U

2

dh

dx
(1 + �0) + �

η

∂p∗

∂y

∣∣∣∣
y=H

. (9)

Solving this equation the pressure distribution can be obtained for short bearings,
with the following assumption:

p = 1

H

∫ y=H

y=0
p∗ dy. (10)

The pressure function:

p(z) = 3ηU

r
r2

(
b2

4
− z2

)

× ε sinϕ
[
S2 + (S + 1 + ε cosϕ)2

]
(S + 1 + ε cosϕ)

[
(4S + 1 + ε cosϕ)(1 + ε cosϕ)3 + 12�(S + 1 + ε cosϕ)

] , (11)
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whereS = 1

α

r√

�

the slip coefficient. Using this pressure function the following

equation was evolved by MURTI for the coefficient of friction:

µ = ηUbr


r

2π

F
√

(1 + S)2 − ε2
. (12)

PRAKASH and VIJ also obtained a pressure function for short bearings with slip
condition in a form of infinite series. They did not use such simplifications as
MURTI, but solved the two governing equations (Reynolds, Laplace) separately.
The form of the pressure function in the porous bush (p∗) and in the oil film (p)
was similar:

p(ϕ, z) = 2
∞∑

n=1

Cn cosλnz cosh[λn H ]

and

p∗(ϕ, y, z) = 2
∞∑

n=1

Cn cosλnz cosh[λn(y + H)], (13)

whereCn are the unknown coefficients to be determined.
Solving the governing equations the following expressions can be got for the

pressure distribution in oil film:

p(z) = 24ηUb2

π3r
r2

∞∑
n=1

ε

(−1)n+1gn(ϕ) cos
(
πβn

z

b

)
(2n − 1)3

, (14)

wheregn contains the slip effect:

gl (ϕ) =
sinϕ[2S2 + 2S(1 + ε cosϕ) + (1 + ε cosϕ)2]

(S+1+ε cosϕ)

[
(1+ε cosϕ)2

{
6α2S2+4S(1+ε cosϕ)+(1+ε cosϕ)2

}+12�
(S+1+εcosϕ)tanh

(
πβn

H
b

)
πβn

h
b

] (15)

and for the coefficient of friction:

µ = 
r

r

[
4π2r3bnη

F
r2
√

(1 + S)2 − ε2
+ ε

2
sinβ

+48ηnb3r(1 − 2α2)S2ε2

π3F
r2

5∑
i=1

1

(2i − 1)4

∫ π

0

sinϕgi(ϕ)

(1 + S + ε cosϕ)2
dϕ

]
. (16)

The above presented four pressure functions used theshort bearing boundary con-
dition. In the following the governing equations of hydrodynamic lubrication of
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porous bearings will be solved using theinfinitely long bearing boundary condition.
To obtain the pressure distribution in oil film CAPONE [4] wrote the equations in
the following forms:

The Reynolds equation:

1

r

∂

∂ϕ

(
h3

r

∂p

∂ϕ

)
= 6

ηU

r

dh

dϕ
+ 12�

(
∂p

∂y

)
, (17)

and the Laplace equation:


p(ϕ, y) = 1

r2

∂2 p

∂ϕ2
+ ∂2 p

∂y2
= 0. (18)

Having made integration and the simplifications he got a differential equation:

dp

dϕ
= 6

ηUr


r2

[
1 + ε cosϕ

(1 + ε cosϕ)3 + 12�
− h0


r

1 + ε cosϕ

(1 + ε cosϕ)3 + 12�

]
. (19)

Overcoming many difficulties we solved this differential equation and obtained a
pressure distribution in the following form:

p(ϕ) = −6ηUrε sinϕ


r2

[
1

6a
ln

a2 − a(1 + ε cosϕ) + (1 + ε cosϕ)2

(a + 1 + ε cosϕ)2

+ 1

a2
√

3
arc tan

2(1 + ε cosϕ) − a

a
√

3

]

+6ηUrε sinϕ


r2

[
h0


r6a2
ln

(a + 1 + ε cosϕ)2

a2 − a(1 + ε cosϕ) + (1 + ε cosϕ)2

− h0


ra2
√

3
arctan

2(1 + ε cosϕ) − a

a
√

3

]
, (20)

wherea = 12�0.33.

4. The Calculations of the Load Carrying Capacity and the Coefficient of
Friction

In order to determine the load carrying capacity of porous bearings we have to
integrate the pressure function. To compare the influence of the different assump-
tions and boundary conditions we calculated the load carrying capacity for all the
five cases presented above. Owing to their complexities the five pressure functions
can be solved only with numerical methods. Beside the load carrying capacity the
coefficient of friction was also calculated.
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During the calculations we considered the changes of the absolute viscosity
of the oil film due to temperature by means of the following Vogel equation:

η(T ) = ae
b

T+c , (21)

wherea, b, c are constants. These constants were determined from three known
viscosity values of the oils. The results of their calculation can be seen inTable1:

Table 1. Constants of Vogel equation for some viscosity grades

ISO-VG 46 ISO-VG 100 ISO-VG 150 ISO-VG 220
η40 = 0.04 [Pas] η40 = 0.09 [Pas] η40 = 0.14 [Pas] η40 = 0.2 [Pas]
η75 = 0.012 [Pas] η75 = 0.02 [Pas] η75 = 0.028 [Pas] η75 = 0.037 [Pas]
η100= 0.006 [Pas] η100= 0.0095 [Pas] η100= 0.013 [Pas] η100= 0.017 [Pas]
a = 2.27 · 10−6 a = 5.95 · 10−5 a = 1.1 · 10−4 a = 1.92 · 10−4

b = 2437.71 b = 991.36 b = 860.37 b = 758.31
c = 209.28 c = 95.39 c = 80.4 c = 69.13

The calculations of the load carrying capacity and the coefficient of friction
were carried out on the porous bearing having the following data:

D1= 44 [mm] H = 4.5 [mm] � = 530· 10−16 [m2]
(measured value)

D = 35 [mm] 
r = 0.02 [mm] � = �H/
r
d = 34.96 [mm] ν = 100 [mm2/s] α = 0.1 (accepted

value from literature)
b = 40 [mm] η40 = 0.09 [Pas] Tambient= 40 ◦C.

4.1. Method of Calculation

The calculation of load carrying capacity was carried out by numerical integration of
the pressure functions above presented. As lubricating oil was chosen in advance
we have to use iteration to obtain the steady state operating temperature of the
bearing.

In the first step of the iteration the bearing temperature was assumed to be
equal to the ambient temperature. In the next calculation step the viscosity of the
lubricating oil was chosen at the value of the bearing temperature determined in the
earlier calculation step.

The steady state bearing temperature was calculated taking only into consid-
eration the heat transmission through the surface of bearing house.
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The friction power in the bearing can be calculated from this formula:

PS = µFU.

The heat transmission through the house surface:

PS = δA
T = µFU,

where the coefficient of heat convectionδ = 17.5 [W/m2K] and the heat convection
surface

A = 17.5 bd.

The calculations were performed at three eccentricity ratios: 0.3; 0.7 and 0.9.
The results of the calculations are summarised inTables 2–6 whereTw: working
temperature.

Table 2. Results according to CAMERON (Eq. (2))

n n = 100 1/min n = 200 1/min n = 300 1/min
ε

Tw = 41.6 η = 0.082 Tw = 46.6 η = 0.064 Tw = 55 η = 0.043
ε = 0.3

F = 457.8 µ = 0.00771 F = 714.6 µ = 0.00771 F = 720.2 µ = 0.00771
Tw = 42.4 η = 0.079 Tw = 49.6 η = 0.055 Tw = 61.6 η = 0.033

ε = 0.7
F = 1377.1 µ = 0.00357 F = 1917.5 µ = 0.00357 F = 1725.7 µ = 0.00357
Tw = 44 η = 0.072 Tw = 55.8 η = 0.041 Tw = 75.7 η = 0.019

ε = 0.9
F = 1813.6 µ = 0.004 F = 2065.5 µ = 0.004 F = 1435.8 µ = 0.004

Table 3. Results according to ROULEAU (Eq. (5))

n n = 100 1/min n = 200 1/min n = 300 1/min
ε

Tw = 41.6 η = 0.082 Tw = 46.3 η = 0.065 Tw = 54.2 η = 0.044
ε = 0.3

F = 464.3 µ = 0.00727 F = 736.1 µ = 0.00727 F = 747.5 µ = 0.00727
Tw = 42 η = 0.08 Tw = 47.7 η = 0.06 Tw = 57.3 η = 0.039

ε = 0.7
F = 1430.9 µ = 0.00279 F = 2146.4 µ = 0.00279 F = 2092.7 µ = 0.00279
Tw = 43.1 η = 0.076 Tw = 52.4 η = 0.048 Tw = 68 η = 0.026

ε = 0.9
F = 1974.6 µ = 0.00311 F = 2494.2 µ = 0.00311 F = 2026.5 µ = 0.00311

For the sake of better demonstration of the differences between the results of
calculations according to the above mentioned authors, the calculated load carrying
capacities at eccentricity ratios 0.3 and 0.9 are presented in theFigs.2 and3.

As it can be seen from these figures the differences between the calculated
load carrying capacity at low eccentricity ratio are inconsiderable for short bearings.
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Table 4. Results according to MURTI (Eq. (11))

n n = 100 1/min n = 200 1/min n = 300 1/min
ε

Tw = 41.4 η = 0.083 Tw = 45.7 η = 0.066 Tw = 53 η = 0.047
ε = 0.3

F = 388.5 µ = 0.00809 F = 610.5 µ = 0.00809 F = 652.2 µ = 0.00809
Tw = 41.8 η = 0.081 Tw = 47.1 η = 0.062 Tw = 56 η = 0.041

ε = 0.7
F = 1247.6 µ = 0.003 F = 1910 µ = 0.003 F = 1894.6 µ = 0.003
Tw = 42.3 η = 0.08 Tw = 49.3 η = 0.056 Tw = 61.1 η = 0.033

ε = 0.9
F = 1912.9 µ = 0.00255 F = 2678.1 µ = 0.00255 F = 2367.3 µ = 0.00255

Table 5. Results according to PRAKASH (Eq. (14))

n n = 100 1/min n = 200 1/min n = 300 1/min
ε

Tw = 41.4 η = 0.083 Tw = 45.6 η = 0.067 Tw = 52.6 η = 0.048
ε = 0.3

F = 388 µ = 0.00784 F = 626.4 µ = 0.00784 F = 673.1 µ = 0.00784
Tw = 41.6 η = 0.082 Tw = 46.3 η = 0.065 Tw = 54.2 η = 0.044

ε = 0.7
F = 1291.3 µ = 0.0026 F = 2047.2 µ = 0.0026 F = 2078.7 µ = 0.0026
Tw = 42 η = 0.08 Tw = 47.8 η = 0.06 Tw = 57.7 η = 0.038

ε = 0.9
F = 1969.2 µ = 0.002 F = 2953.8 µ = 0.002 F = 2806.1 µ = 0.002

Table 6. Results according to CAPONE (Eq. (20))

n n = 100 1/min n = 200 1/min n = 300 1/min
ε

Tw = 42.7 η = 0.078 Tw = 51 η = 0.051 Tw = 65 η = 0.028
ε = 0.3

F = 3238µ = 0.00173 F = 4234 µ = 0.00173 F = 3487µ = 0.00173
Tw = 43 η = 0.076 Tw = 52 η = 0.049 Tw = 66 η = 0.027

ε = 0.7
F = 7780µ = 0.00071 F = 10032µ = 0.00071 F = 8292µ = 0.00071
Tw = 44 η = 0.072 Tw = 55.5 η = 0.042 Tw = 75 η = 0.02

ε = 0.9
F = 9897µ = 0.00073 F = 11546µ = 0.00073 F = 8247µ = 0.00073

At the same time at high eccentricity ratio (0.9) there are considerable differences
between the calculated load carrying capacities. Taking into consideration that the
pressure functions in the oil film and in the porous material are different that in-
creased the load carrying capacity (ROULEAU). Further increasing of load carrying
capacity results the using of slip boundary condition (MURTI). PRAKASH and VIJ
obtained the pressure function for short bearings with slip boundary condition in a
form of infinite series and solved the Reynolds and Laplace equations separately,
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which led higher load carrying capacity.

Figs. 2 and3 also show the enormous differences between the load carrying
capacities using theshort bearing and the infinitelylong bearing assumptions. We
mention that the hydrodynamic load carrying capacity of sliding bearings with
‘the finite width boundary condition’ is between the two values. The calculated
hydrodynamic load carrying capacities are relatively low, at eccentricity ratio 0.9
because of thepermeability. The average bearing pressure is 2 [N/mm2].
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5. Conclusions

The solutions presented above of the equations of the hydrodynamic lubrication for
porous bearings and the calculated load carrying capacities show that:

• The solutions of equations of hydrodynamic lubrication for porous bearings
are more complicated than for the solid sliding bearings.

• There are many new boundary conditions taken into consideration with the
influence of the porous bearings on the hydrodynamic effect.

• The short bearing assumption gives more simpler solution than the infinite
long bearing assumption.
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Nomenclature

x – tangential coordinate [m]
y – radial coordinate [m]
z – axial coordinate [m]
r – radius of shaft
u – x velocity [m/s]
v – y velocity [m/s]
w – z velocity [m/s]
n – number of revolution [1/s]
d – shaft diameter [m]
b – width of bush [m]

r = (D − d)/2 [m]
D – inner diameter of bush [m]
D1 – outside diameter of bush [m]
H – wall thickness of bush [m]
ε – eccentricity ratio [-]
ϕ – circumferential coordinate
ηx x – absolute viscosity of oil [Pas]
ν – viscosity of oil [mm2/s]
µ – coefficient of friction [-]
U – circumferential velocity
T – temperature [◦C]
F – load carrying capacity [N]
φ – permeability [m2]
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� – permeability parameter [-]
α – slip coefficient [-]
S =

√
�

α
r – slip parameter
p(x, z) – pressure in oil film
p∗(x, y, z) – pressure in porous bush
u, v,w – velocity in oil film
u∗, v∗, w∗ – velocity in porous bush
h(ϕ) = 
r(1 + cosϕ) – clearance function
h0 – minimum film thickness
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