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Abstract

In the planning phase of pipe systems, the behaviour of pipe systems under irregular operating
conditions should be controlled. This checking process can be made with the aid of computer
programs. These computer programs have numerical models for each element (pipe, pump, different
valves, air vessel, etc.) of the pipe system. Check valves are pipe accessories that can prevent back-
flows in the system after the shut-down of the pump. This paper presents a mathematical model,
which can be applied to simulate the behaviour of check valves, not only in case of full closure, but
also at changes of flow conditions in the pipe. The research in this field is sponsored by the fund
OTKA (OTKA T029073).
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1. Introduction

In the planning phase and later during the regular operation of pipe systems, the
transient processes are the most dangerous events for the system. These processes
should be checked numerically. Effects of extreme operating conditions of the pipe
system in the planning phase are simulated with the help of computer programs.
During regular operation, the comparison of measured and calculated values of both
pressure and flow rate could reveal failures of the system. A computer code, which
can simulate the processes in a pipe system, must have numerical-mathematical
models of each pipe element.

Check valves are self-acting valves, which allow flow only in one direction.
They are built into the system to prevent back-flows after shut-down of pumps.
Imperfect operation of check valves can cause high pressure peaks, vibrations or
even breaks in the pipe systems. Most of the mathematical models of check valves
were developed for the worst case, specially for the full stop of flow in the pipe.
PROVOOST [1] developed a dynamic model of check valves for full closure. Some-
times the change between two stationary operation points of the pipe system results
in pressure peaks. In some systems more check valves are built in serially. In
this case a bad model can produce self-excited oscillations, while the real system
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operates well. It is therefore necessary to have a numerical model, which simulates
not only the closing process of check valves but also the operation point changes.
Such models have been developed by FŰZY [2] and CSEMNICZKY [3] (based on the
behaviour in steady flow). It is known by experience of numerical calculations, that
this model is not correct. It tends to oscillations and instabilities of the numerical
computations. A better model has been developed by comparing experiments and
numerical computations of the same system.

2. Steady Flow Behaviour

The behaviour of check valves in steady flow is properly described by their char-
acteristics. These characteristics show how the pressure drop and the hydraulic
opening torque depend on the opening angle of the check valve. They are measured
in steady flow. The drag coefficient (� ) gives the relationship between pressure
drop (1p) and flow velocity (v) for a given opening angle ('):

1p D � .'/
�

2
v

2
: (1)

Because the drag coefficient changes from zero to infinity, this interval is trans-
formed to interval T0� 1U. The parameter after substituting � of check valves is the
drag number (K� .'/):

� .'/ D

�
1

K� .'/
� 1

�2

: (2)

The other parameter is the coefficient of hydraulic torque (KM .'//, which gives
the dependence of hydraulic opening torque (MH ) on the pressure drop for a check
valve with nominal diameter D:

MH D KM .'/ �1p � D3
: (3)

In a steady flow the torque equation is the following:

MH .';1p/C Mc .'/C MT .'/ D 0; (4)

where Mc is the torque caused by the eccentricity of the mass centre of valve disc
and MT is the torque of the mass load (m) on the lead-out rotation shaft. These are
given by:

MC D �KC.'/ � m0 � g � D; (5)
MT D �k � m � g: (6)

These dimensionless characteristics of operation in steady flow are the only char-
acteristic values given by the check valve producers. These characteristics could be
used to determine the operating point of the check valve after a transient process.
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3. Earlier Dynamic Model

The models for the transient behaviour of check valves of FŰZY and CSEMNICZKY
are based on the characteristics in steady flow. The dynamic equation of the valve
disc is given below:

R' D
M

2
; (7)

where M is the sum of the torques acting on the valve shaft (Fig.1),2 is the moment
of inertia of the rotating parts including the moment of inertia of the mass load. For
a moving disc there are new torque components:

M D Mc .'/C MT C MH .';1p/C Mb . P'/C M! . P'/ : (8)

New torque components are the braking torque M! (of streaming fluid acting against
the rotation of the disc), and the braking torque of the oil-damper Mb. These torque
components are given by the following formulae:

M! D �K! � m0 � D2 j P'j P'; (9)

Mb D

�
Kb .'/ � P'

2 P' < 0
0 P' � 0: (10)

Fig. 1. Torques on the check valve disc

In these equations m0 is the mass of the valve disc, K! the coefficient of
braking torque (see CSEMNICZKY [3]) and Kb.'/ the opening angle dependent
dimensional damper coefficient.

4. Experimental Study of the Model

At the Department of Hydraulic Machines of the Budapest University of Technol-
ogy and Economics a modular computer program has been developed to calculate
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transient processes in pipe systems. This program contains the check valve model
with the above mechanical equations. In the laboratory of the Department a mea-
suring equipment has been built for transient investigation of check valves (Fig.2).
It is possible to generate two types of sudden changes. One of them is a jump in
the mass load, the other one is a sudden change of flow rate by opening a bypass.
Sudden opening of the bypass can be accomplished by piercing a foil at the port of
a T-junction [4].

Fig. 2. Measuring equipment

During our experiments we have detected that there is a high friction at the
rotation shaft. The experiments show high damping but the simulation with the
original model gives oscillation of the disk valve (Fig.3). The torque of this friction
was not included in the mechanical model.

Fig. 3. Change of opening angle, piercing a foil before the check valve
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5. Friction at the Rotation Shaft

The friction at the rotation shaft is modelled by Coulomb’s law. There are two
different cases, friction at rest and friction in motion. The friction at rest stabilises
the position of the valve disk. When the sum of other torque components is less
than the moment of friction at rest, there will not be a change of the disk position.
The dynamic motion equation is modified with the friction:

2
d2
'

dt2
D

�
0 jMj < MF0 max

M � sign . P'/ � MF otherwise. (11)

MF0 is the torque of friction at rest, MF is the torque of the friction in motion. M
is the sum of the other torque components. The torques of friction can be given by
the following formulae:

MF0 max D �0 FN
ds

2
(12)

and

MF D �FN
ds

2
; (13)

where ds is the diameter of the sliding bearings, � and �0 are the coefficients
of friction in motion and at rest, respectively. We used the numerical values of
coefficients corresponding to the bearing’s materials. FN is the normal force at the
bearing. The normal force is defined by the following formula:

FN D

q
[.m C m2/ g C1p � A � sin .' C �/]2 C [1p � A � cos .' C �/]2

: (14)

In this formula m2 and m are the masses of rotating parts and that of the mass load
respectively, A the area of the valve disc and � the angle of the valve disk at fully
closed state relative from vertical.

Considering friction improved our model, but it still does not describe properly
the behaviour of the real check valve [6].

6. Steady Flow Characteristics of the Check Valve

It must be checked whether the model according to Eqs. (1)–(3) can be used in tran-
sient operation, too. These characteristics were determined by stationary stream-
lines. During the change of the opening angle of the valve the streamlines also
change. The reason why these characteristics are used is that these are the only
known characteristics of the check valve. In Eq. (1) the incident velocity should be
the relative velocity of the fluid and the valve disc. Consider (Fig.4), that when the
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disc opens the part over the shaft moves (v1/ against the flow, the part below the
shaft moves (v2/ in the direction of the flow. The relative velocities are:

vrel1 D v C r1 � P' (15)
and

vrel2 D v � r2 � P': (16)

r1 and r2 are the distances of the centres of mass of the two parts of the disc.
With these relative velocities the renewed dynamic formula of the hydraulic

torque can be defined:

Mh D KM .'/ � D3 � � .'/
�

2

1

A

�
A1v

2
rel1 C A2v

2
rel2

�
: (17)

Here A is the area of the valve disc, A1 and A2 are the areas of the valve disc
parts. The formula gives the steady state value in case of steady flow. This formula
enables the more exact simulation with the use of stationary characteristics.

Fig. 4. Relative velocities

7. Modification of the Moment of Inertia

The reduced moment of inertia of the rotating parts of the check valve consists of
two parts. The dynamic equation should include the acceleration of the valve disc
and that of the mass load. The revised equation is:

20 R' C m � k � a D M; (18)

where 20 is the moment of inertia of the valve disc and of rotating parts, m is the
mass load and ‘a’ is the acceleration of the mass load during the opening or closing
process. There is a kinematic coupling between the acceleration of the mass load
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and the angular acceleration. If the arm of the mass load is k, this is given by the
formula:

a D k � R': (19)

From Eqs. (18) and (19) the reduced moment of inertia can be defined as:

2r D 20 C m � k2
: (20)

When a disc rotates in a viscous fluid, it takes some fluid with it. This fluid increases
the accelerated mass. Therefore it also increases the moment of inertia of the rotating
parts. It should be recommended to increase the moment of inertia to consider that
of the accelerated fluid by some fraction. The valve disc has an asymmetrical
form. Therefore it transports a varying volume of fluid depending on the rotation
direction. The added mass and the increase of the moment of inertia also depends
on the rotation direction (Fig. 5). By introducing the mass raising factor f , the
moment of inertia of the whole system is:

2 D .1 C f / �20 C m � k2
: (21)

The values of factor f which proved to be satisfactory in our simulation tests were
0.1 and 0.3 respectively in the positive and negative acceleration of the valve disc.

Fig. 5. The raise of the moment of inertia by attached fluid for both directions of rotation

8. The Results of the New Model

The program simulating transient processes in pipe systems has been developed
at the Department of Hydraulic Machines. The modular structure of the program
enables easy change of the models of the different pipe accessories. With the change
of the original check valve model, simulations were executed. We have investigated
rapid changes in the system generated by step functions in the mass load or in the
flow rate through the check valve. The rapid change of mass load is a relatively slow
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Fig. 6. Change of opening angle after cutting off mass load
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Fig. 7. Change of pressure drop after cutting off mass load

process. In this case the change is transmitted to the system over the inertial mass
of the rotating parts. A comparison of the results of measurements and numerical
simulations is presented in Figs. 6 and 7. Fig. 6 shows the change of the opening
angle and Fig. 7 the pressure drop through the check valve over the time. Cutting
off the mass has occurred at 0 s. The working point of the pump does not change
much because the pressure drop of the check valve is about 6% of that of the whole
measuring equipment.

In Figs. 8, 9, and 10 time histories for piercing a foil are presented. Piercing
the foil behind the check valve happened at t D 0:15 s. Fig.8 shows the change of
the opening angle, Fig.9 and 10 show the pressure at the pressure tapping before and
behind the check valve. This change acts directly on the hydraulic system, there is a
big change in the point of operation of the pump. There is a difference of measured
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Fig. 8. Change of opening angle after piercing a foil
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Fig. 9. Change of pressure before the check valve after piercing a foil

and computed pressures. The reason for this difference is that the shortages of
mathematical models of other components of the complete investigated system
(pump, valves, elastic pipes, etc.) influence the numerical results too.

Comparing measurements with simulations of the same changes prove that
the developed model can simulate transient processes in pipe systems containing
check valves with acceptable accuracy. Our model must also be tested with results
from measurement of other systems.
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Fig. 10. Change of pressure behind the check valve after piercing a foil

9. Conclusions

On the basis of the old dynamical model of check valves by CSEMNICZKY and
FŰZY we have developed a new model by correcting the motion equation of the
valve disk. Considering the friction on the shaft, the rotation direction dependency
of the moment of inertia of the attached fluid and the relative incidence velocity in
the hydraulic torque the simulation results of the improved model are more realistic
than those of the earlier one. By improving the numerical models of the other pipe
components the simulation can be even more exact.
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