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Abstract

This paper presents the design of a kind of semiglobal nonlinear observers for flexible joint robots
which needs the measurements of the positions of each motor rotor and link. For the proposed observer,
the error equation is locally exponentially stable about the origin, with a region of convergence which
may be arbitrarily enlarged by a suitable choice of the observer gain. The results are illustrated by
simulation examples.
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1. Introduction and Preliminaries

The observer design problem for flexible joint manipulators has attracted consider-
able attention in the last decade (see e.g. [11], [7], [3], and the references therein).
The need for a state observer arises from the fact that the control of flexible joint
robots by state feedback requires the knowledge of four state variables for each of
the joints, but the measurement of all variables is too expensive if not impossible.
Therefore, observers that reconstruct the whole state vector by using a reduced set
of measurements are needed for controller design (see e.g. [4] – [6]).

In the literature, design of state observers is reported under the assumption
of different measurements: in [11] an observer was proposed assuming link po-
sition and speed available from measurement, which has globally asymptotically
stable error dynamics, while in [7] only the link positions are assumed to be mea-
surable; in this case, the error dynamics is semiglobally asymptotically stable. In
this paper, a parametrized family of semiglobally exponentially stable observers is
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proposed under the assumption that both link and motor positions are available for
measurement. Since most robots are equipped with sensors on the motor shaft, the
measurement of motor positions seems to be a reasonable assumption. On the other
hand, the proposed parametrization gives more flexibility in adjusting the behaviour
of the observer.

We use standard notation in the paper. In particular, kxk denotes the Euclidean
norm of vector x , kAk denotes the induced matrix norm of matrix A. AT denotes
the transpose of matrix A, �m.A/ and �M.A/ denote the minimum and maximum
eigenvalues of symmetric matrix A, respectively.

Detailed description of dynamic models of elastic joint robots is reported in
[2], [9] and [10] (see also [11]). Assuming that the motion of the actuator rotors
may be considered as pure rotations with respect to an inertial frame, the model of
an elastic joint robot is given by

B1.q1/ Rq1 C C1.q1; Pq1/ Pq1 C K .q1 � q2/C h.q1/ D 0; (1)
B3 Rq2 � K .q1 � q2/ D u;

where q1 and q2 are the n � 1 vectors of the link and rotor relative displacements,
respectively,

C1.q1; Pq1/ Pq1 D PB1.q1/ Pq1 �
1

2

@ PqT
1 B1.q1/ Pq1

@q1
(2)

and PB1 � 2C1 is a skew-symmetric matrix, for a suitable definition of C1 (see [2]
and [7]). For rotational joints there exist positive constants such that

B1m � �m.B1.q1// � kB1.q1/k � �M.B1.q1// � B1M; 8q1 2 Rn; (3)
kC1.q1; Pq1/k � C1M k Pq1k ; 8q1; Pq1 2 Rn: (4)

Matrix C1 has the property (see [7])

C1.q1; y/z D C1.q1; z/y; (5)

where y and z are arbitrary n � 1 vectors.
We shall assume that the positions of all links and motor rotors are measured

so that the n � 1 output vectors y1 and y2 are given by

y1 D q1; y2 D q2:

2. A Design of Nonlinear Observers

In this section we show how to design a locally exponentially stable nonlinear
observer which requires the measurement of the link and motor positions and for
which the region of convergence may be arbitrarily enlarged by increasing some
observer gains. Such a nonlinear observer may be used in a dynamic output feedback
controller to perform asymptotic tracking of a desired trajectory. We shall assume
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that a sufficiently smooth reference trajectory qd.:/ for the link position is given and
we construct the observer directly in terms of tracking error variables. We define
the error vectors

x1 D q1 � qd ; x2 D Pq1 � Pqd ; (6)

and introduce the variables

x3 D q2; x4 D Pq2: (7)

In the new coordinates model (1) becomes

Px1 D x2;

B1.x1 C qd/ Px2 C C1.x1 C qd; Px2/ Px2C

Ch1.x1 C qd/C K .x1 C qd � x3/ D �B1.x1 C qd/ Rqd ;

Px3 D x4;

Px4 D B�1
3 K .x1 C qd � x3/C B�1

3 u;

y1 D x1 C qd ;

y2 D x3:

(8)

Let the state variables of the observer be denoted by �i , i D 1; :::; 4, and let us
estimate xi in (8) bybxi , where

bx1 D � 1; bx2 D � 2 C k1.y1 � qd � � 1/;bx3 D � 3; bx4 D �4 C k2.y2 � � 3/; (9)

and k1, k2 denote design parameters. As usual, the input variables of the observer
are the input and output variables of the original model (8), i.e. u, y1 and y2. The
observer is looked for in the following form:

1/ P� 1 D � 2 C k1.y1 � qd � �1/C H11.y1 � qd � �1/C H12.y2 � � 3/;

2/ B1.y1/ P� 2 C C1.y1; � 2 C k1.y1 � qd � � 1/C Pqd/�

� .�2 C k1.y1 � qd � � 1/C Pqd/ D

D �K .y1 � � 3/� h1.y1/� B1.y1/ RqdC (10)

C eH21.y1 � qd � �1/C
eH22.y2 � � 3/;
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3/ P� 3 D �4 C k2.y2 � � 3/C H31.y1 � qd � �1/C H32.y2 � � 3/;

4/ P� 4 D B�1
3 K .y1 � � 3/C B�1

3 u C eH41.y1 � qd � � 1/C eH42.y2 � � 3/;

where Hij and eHlj , ( i=1,3, j=1,2, l=2,4, ) are further design parameters to be fixed
later. To investigate the estimation errorexi D xi �bxi ; i=1,...,4, first we rewrite the
second and the fourth equations of (10) in terms of variablesbxi . We have

2/ B1.y1/
:bx2 CC1.y1;bx2 C Pqd/.bx2 C Pqd/C K .y1 �bx3/C h1.y1/ D

D k1 B1.y1/. Px1�
:bx1/� B1.y1/ Rqd C eH21.y1 � qd � � 1/C

C eH22.y2 �bx3/ D

D k1 B1.y1/.x2 �bx2/� B1.y1/ Rqd C .eH21 � k1 B1.y1/H11/�

� .y1 � qd � � 1/C .eH22 � k1 B1.y1/H12/.y2 �bx3/; (11)

4/
:bx4D k2. Px3�

:bx3/C B�1
3 K .y1 �bx3/C B�1

3 u C eH41.y1 � qd � �1/C

C eH42.y2 �bx3/ D

D k2.x4 �bx4/C B�1
3 K .y1 �bx3/C B�1

3 uC

C .eH41 � k2 H31/.y1 � qd � � 1/C .eH42 � k2 H32/.y2 �bx3/:

To simplify these equations, we introduce the notations

H21 D eH21 � k1 B1.y1/H11; H22 D eH22 � k1 B1.y1/H12;

H41 D eH41 � k2 H31; H42 D eH42 � k2 H32:

Now, by taking into consideration (9) and relations ex1 D y1 � qd �bx1; ex3 D

y2 � bx3; subtraction of the corresponding equations of (10) and (11) from the
equations of (8) gives the error equation as follows:

:ex1 Dex2 � H11ex1 � H12ex3;

B1.y1/
:ex2 D � k1 B1.y1/ex2 C .K � H22/ex3 � H21ex1�

� .C1.y1; x2 C Pqd/.x2 C Pqd/� C1.y1;bx2 C Pqd/.bx2 C Pqd//; (12)
:ex3 Dex4 � H31ex1 � H32ex3;
:ex4 D � k2ex4 � .B�1

3 K C H42/ex3 � H41ex1:

We want to find conditions for the unknowns Hij and ki under which all solutionsexi ; i D 1; :::; 4 of (12) starting from a certain neighbourhood of the origin tend to
the origin. Let us introduce the notation ewT D .exT

1 ;exT
2 ;exT

3 ;exT
4 / and consider the

candidate Lyapunov function

V0.t;ew/ D
1

2

�exT
1 P1ex1 CexT

2 B1.q1.t//ex2 CexT
3 P3ex3 CexT

4 P4ex4
�

(13)
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with arbitrary positive definite matrices P1, P3, P4. The time derivative of V0 along
the solution of (12) is the following

PV0 D
1

2
exT

2
PB1.q1/ex2 CexT

1 P1

:ex1 CexT
2 B1.q1/

:ex2 CexT
3 P3

:ex3 CexT
4 P4

:ex4 : (14)

Substituting the derivatives from the equations (12) into (14), we get

PV0 DexT
1 P1ex2 �exT

1 P1 H11ex1 �exT
1 P1 H12ex3 C

1

2
exT

2
PB1.q1/ex2�

� k1exT
2 B1.q1/ex2 �exT

2 .C1.x1; x2 C Pqd/.x2 C Pqd/�

� C1.y1;bx2 C Pqd/.bx2 C Pqd//CexT
2 .K � H22/ex3 �exT

2 H21ex1C (15)

CexT
3 P3ex4 �exT

3 P3 H31ex1 �exT
3 P3 H32ex3�

� k2exT
4 P4ex4 �exT

4 P4.B�1
3 K C H42/ex3 �exT

4 P4 H41ex1:

By taking into account property (5) and adding and subtracting C1.y1; x2 C Pqd/

.x2 � bx2/; the expression in the second line of (15) can be transformed in the
following way:

C1.y1; x2 C Pqd/.x2 C Pqd/� C1.y1;bx2 C Pqd/.bx2 C Pqd/�

� C1.y1; x2 C Pqd/.x2 �bx2/ D

D C1.y1; x2 C Pqd/.bx2 C Pqd/C C1.y1; x2 C Pqd/.x2 �bx2/�

� C1.y1;bx2 C Pqd/.bx2 C Pqd/ D

D C1.y1;bx2 C Pqd/ex2 C C1.y1; x2 C Pqd/ex2:

Because of the skew-symmetry of 1
2
PB1.q1/� C1.q1; Pq1/; the pure quadratic terms

ofex2 in (15) are reduced to

�exT
2 .C1.q1;bx2 C Pqd/C k1 B1.q1//ex2: (16)

If the design parameters are chosen to satisfy conditions

P1 D H21; H12 D �P�1
1 H31 P3; H22 D K ;

(17)
H41 D 0; H42 D P3 P�1

4 � K B�1
3 ;

then we have

PV0 D �exT
1 P1 H11ex1 �exT

2 .k1 B1.q1/C
(18)

CC1.q1;bx2 C Pqd//ex2 �exT
3 P3 H32ex3 � k2exT

4 P4ex4:

Since
kC1.q1;bx2 C Pqd/k � C1M kbx2 C Pqdk � C1M .k Pq1k C kex2k/ ; (19)
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and kB1.q1/k � B1m; (16) can be estimated in the domain

k Pq1k � �1; kex2k � �2 (20)

as follows

exT
2 .C1.q1;bx2 C Pqd/C k1 B1.q1//ex2 � [k1 B1m � C1M.�1 C �2/]exT

2 ex2 � �0exT
2 ex2;

where the last inequality is fulfilled for any positive �0 if parameter k1 is chosen
according to

k1 �
1

B1m
.�0 C C1M.�1 C �2//: (21)

Let P1; P3, H11 and H32 be chosen to satisfy equations

H T
11 P1 C P1 H11 D Q1 and H32 P3 C P3 H32 D Q2 (22)

with symmetric and positive matrices Q1, Q2.

Theorem 1 If (20) is satisfied, �0, k2 are arbitrarily fixed positive numbers, k1 is
chosen according to (21) and the further design parameters of the observer satisfy
relations (17) and (22), the origin is locally exponentially stable for (12) in the
region defined by (20).

Proof. The function V0.t; ew/ satisfies the following inequality

 1 kewk2 � V0.t;ew/ �  2 kewk2 ; (23)

where

 1 D
1

2
min [�m.P1/; B1m; �m.P3/; �m.P4/] ;

 2 D
1

2
max [�M.P1/; B1M; �M.P3/; �M.P4/] :

Under the conditions of the theorem, we have

PV0 � �

�
1

2
�m.Q1/exT

1 ex1 C �0exT
2ex2 C

1

2
�m.Q3/exT

3 ex3 C k2�m.P4/exT
4 ex4

�
�

(24)
� � 3 kewk2 ;

where  3 D min
�

1
2�m.Q1/; �0;

1
2�m.Q3/; k2�m.P4/

�
: The local exponential sta-

bility of (12) follows from T heorem 4.2 [8].

Remark 1 Theorem 1 states local exponential stability of (12). The exponential
convergence takes place in the region where estimations (23) and (24) are valid,
i.e. when (20) and (21) hold true. Therefore the region of attraction can be made
arbitrarily large by choosing a sufficiently large k1. In this sense, we can speak
about semiglobal convergence.
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A possible choice of the parameters can be given as follows:

H11 D H21 D H32 D I; H12 D H31 D H41 D 0; H22 D K ; H42 D I � K B�1
3 ;

eH41 D 0;
eH22 D K ;

eH21 D I C k1 B1.y1/;

eH42 DH42 C k2 H32 D I � K B�1
3 C k2 I D .1C k2/I � K B�1

3 ;

P1 D P3 D P4 D I:

Therefore the observer will be

P� 1 D �.k1 C 1/� 1 C � 2 C .1 C k1/.y1 � qd/;

B1.y1/P�2 C C1.y1; � 2 C k1.y1 � qd � � 1/C Pqd/.�2 C k1.y1 � qd � � 1/C Pqd/ D

D �B1.y1/ Rqd � h1.y1/C K .y2 � y1/C .I C k1 B1.y1//.y1 � qd � � 1/;

P� 3 D �.k2 C 1/� 3 C �4 C .k2 C 1/y2;

P� 4 D �.k2 C 1/� 3 C B�1
3 K y1 C ..1 C k2/I � K B�1

3 /y2 C B�1
3 u:

(25)

3. Simulations

The performance of the proposed observer has been tested by simulations with
respect to two robots, the models and the system parameter values of which are
given in the literature ([7] and [1]).

Example 1 [7] The robot consists of one elastic joint, rotating in a vertical plane.
Frictional forces have not been considered. Its dynamic model is represented by

JL Rq1 C k.q1 � q2/C
1

2
mgl sin q1 D 0;

JR Rq2 � k.q1 � q2/ D u;

where JL and JR are, respectively, the inertias of the link and of the motor rotor, m
is the link mass, g is the gravity constant, l is the link length, and k is the elastic
constant of the joint. The robot parameters are (all values are in SI units)

m D 1; l D 1; k D 100; JR D 0:02 JL D 0:4:

The desired reference trajectory for the link position is given by

qd.t/ D 1 �
2

1 C et
:
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The initial conditions for the robot are

q1.0/ D 0; q2.0/ D 0; Pq1.0/ D 0; Pq2.0/ D 0

and the initial conditions for the observer are

bx1.0/ D 0; bx2.0/ D 0:01; bx3.0/ D 0; bx4.0/ D 0:01 :

The design parameters are chosen to be

k1 D 100; k2 D 10;

P3 D P4 D H11 D H32 D 1; H12 D H31 D H41 D 0;

H22 D k:

Fig. 1 shows the obtained observer error for P1 D H21 D 1; 10; 30.
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Example 2 The robot PU M A 560. The explicit dynamic model and inertial pa-
rameters have been published in [1]. The desired reference trajectory for the link
position is given by

qd.t/ D T0; qd2.t/; qd3.t/; 0; 0; 0UT ;

where

qd2.t/ D qd3.t/ D 1 �
2

1 C et
:

The initial conditions for the robot are

q1.0/ D T0; 0; 0; 0; 0; 0UT ; q2.0/ D T0; 0; 0; 0; 0; 0UT ;

Pq1.0/ D T0; 0; 0; 0; 0; 0UT ; Pq2.0/ D T0; 0; 0; 0; 0; 0UT

and the initial conditions for the observer are

bx1.0/ D T0; 0; 0; 0; 0; 0UT ; bx2.0/ D T0; 0:01; 0:01; 0; 0; 0UT ;bx3.0/ D T0; 0; 0; 0; 0; 0UT ; bx4.0/ D T0; 0:01; 0:01; 0; 0; 0UT :

The design parameters are chosen to be

k1 D 100; k2 D 10:

P3 D P4 D H11 D I; H12 D H31 D H41 D 0;

H22 D K ; H42 D I � K B�1
3 ;

P1 D H21 D

2
666664

1 0 0 0 0 0
0 p1 0 0 0 0
0 0 p2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3
777775 ; H32 D

2
666664

1 0 0 0 0 0
0 p3 0 0 0 0
0 0 p4 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3
777775 :

Simulations have been performed for the following values of the parameters pi :

case 1 V p1 D 170; p2 D 50; p3 D 30; p4 D 25;
case 2 V p1 D 350; p2 D 100; p3 D 60; p4 D 50;
case 3 V p1 D 700; p2 D 200; p3 D 120; p4 D 100:

The obtained observer errors are shown for the 2d link in Fig. 2 and for the 3d link
in Fig. 3. In these figures the notations kwkk

2 D
P4

jD1ex2
j k; k D 2; 3 have been

used.
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4. Conclusion

In this paper we have provided a nonlinear observer for robots with elastic joints.
The proposed observer requires the measurements of both the link and motor posi-
tions. It estimates the velocity of each link and motor rotor and is locally exponen-
tially stable. The region of convergence may be arbitrarily enlarged by increasing
some gains.
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