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Abstract

Since introducing of the flash method of thermal diffusivity measurement, a large scale of devices and
evaluation methods has been developed with various levels of sophistication. Widening the application
field of the method is going on continuously and thanks to the computer technology available today,
the evaluation of experiments and the determination of thermal parameters can be performed in the
case of non-ideal measurement data. With the help of the classical solution of the heat conduction
equation, we give a short analysis of influencing factors like the sample thickness-to-diameter ratio,
the heat losses, the effect of the flash duration and prolonged heat penetration on the front side. The
knowledge of the anthracite properties is essential in the determination of the thermal characteristics
of packed coal beds. Because of the unavailability of these data for coals of different origin, the
author’s objective was to test whether the flash method is applicable for determining the thermal
diffusivity of anthracite. A number of anthracite grains with different size were embedded in acrylic
resin and after cutting and polishing we got the proper specimens. Samples were made with layers
both parallel and perpendicular to the direction of the energy input. The thermal diffusivities in the
parallel and the perpendicular directions are characteristically different. While this difference is only
around 30% in the green state, it has been increased to about 300% or more for some samples in the
calcined state.

Keywords: flash method, thermal diffusivity, heat penetration.

1. Introduction

According to TAYLOR and MAGLIÇ (1981), the flash method is considered standard
among the thermal diffusivity determination procedures. The present measurements
were performed by the use of the device using a flashlamp (KISS et al., 1993). The
anthracite cannot be used as a specimen in its granular form directly for the flash
method. The different sized grains were embedded in acrylic resin and after cutting

1The author obtained a three months scholarship from the Ministère de l’Éducation du Québec
that took place at the Université du Québec à Chicoutimi and the measurements were done at the Heat
Transfer & Combustion Laboratory of GRIPS (Groupe de Recherche en Ingénierie des Procédés et
Systèmes).
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and polishing we got the proper coin like samples. The evaluation method proposed
originally by PARKER et al. (1961) – that is based on the analytical solution of a
perfectly insulated sample and ideal pulse (� D 0:1388 � L2

=t1=2, where t1=2 is
the time needed for the rear side temperature to reach 50% of its maximum) did
not perform satisfactorily in our case. Most of the rear side temperature histories
registered by us were different from those appearing in the literature: a slight
continuous increase was observed instead of horizontal or decreasing tendency. We
considered that the glass envelope of the flash tube and other solid surfaces re-emit
the absorbed energy during the registration, causing a slight increase of the sample
temperature. (The same effect could happen in other instruments if the windows of
the sample chambers absorb a part of the flash energy.)

Because we did not find the appropriate solution for the temperature distribu-
tion in the literature, in the following section we give an analysis covering the effects
of different factors like the sample thickness-to-diameter ratio, the heat losses, and
the effect of the flash and continuous heat penetration on the front side.

2. Mathematical Analysis

2.1. The Base Solution

The next analysis is based on the separation of the variables, the classical solution
method of heat conduction problems. (It is considered that this method shows sat-
isfactory convergence only at longer time, but the given determination of thermal
diffusivity uses the least square method for the curve fitting, thus this characteristic
is not detrimental.) The thermophysical properties of different substances depend
on the temperature, but for small temperature excursions, it is suitable to use the
linear heat-conduction equation

� � r2T .r; z; t/ D @T .r; z; t/

@t
; (1)

or in dimensionless form

r2
#.!; �; Fo/ D @#.!; �; Fo/

@Fo
; (2)

where � = �=.� � c/ is the thermal diffusivity, m2/s;
� = the heat conductivity, W/(m � K);
c = the specific heat capacity, J/(kg � K);
� = the density, kg/m3;
T .r; z; t/ = temperature at point r; z; K ;
r; z = coordinates of cylindrical system, m;
t = time, sec;
! = r=L radial dimensionless coordinate;
� = z=L axial dimensionless coordinate;
Fo = � � =L2 dimensionless time.
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As it is common, one can obtain the solution of (2) in the following form

#.!; �; Fo/ D
1X

mD1

1X
nD1

Cm;n � Z.�m; �/ � R.
n; !/ � e�.�2
mC
 2

n /�Fo
: (3)

The �m and 
n eigenvalues are calculated according to the boundary conditions, and
Cm;n from the initial condition. We consider that boundary condition of the third
kind exists on all surfaces of the sample, Bir D .�r � L/=� and Biz D .�z � L/=�,
where �z is the heat transfer coefficient on the front and rear sides of the sample,
and �r is the one along its perimeter. The coin-like specimen has a thickness L and
a radius R.

The boundary conditions are
at � D 0 (z D 0)

�@#

@�
C Biz � # D 0; (4a)

� D 1 (z D L)
@#

@�
C Biz � # D 0; (4b)

at ! D M D .R=L/ .r D R/

�@#

@!
C Bir � # D 0; (5)

and the initial condition is
at Fo D 0

#.!; �; Fo/ D �.!; �/: (6)

As one can realize, the heat source term is missing both from the (2) and (4a) equa-
tions. We introduce an alternative way to determine the time dependent temperature
field caused by the short irradiation of the front side, and this procedure makes the
analysis of the pulse time and the heat penetration also possible. We consider (1)
independent of r (later analysis will show that if R=L is high enough, then the heat
conduction in the radial direction plays no role) and differentiating both sides of
(1) with respect to z, we obtain

�
@

2

@z2

�
@T

@z

�
D @

@t

�
@T

@z

�
: (7)

Substituting the heat flux Pqz D ��@T=@z

�
@

2

@z2
. Pq/ D @

@t
. Pq/: (8)
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As it is known, the heat flux satisfies the same differential equation as the tempera-
ture, but one should pay attention to the appropriate initial and boundary conditions
for Pq .

The temperature distribution in a semi-infinite body can be determined as a
function of the composite variable � D z=.2

p
� � t/. After a stepwise raise of the

surface temperature (previously kept uniform, considered as equal to 0) the solution
has the next form (see GRIGULL and SANDNER, 1984)

T .z; t/ D Tw � .1 � erf .� //; (9)

where Tw = suddenly applied surface temperature,

erf .� / =
2

�

Z �

0
e�u2

du, the error function.

Now, we apply solution (9) to determine Pq. A uniform temperature field in the
sample means Pq D 0. Thus, when a constant heat flux is suddenly applied at the
front surface for the time period tf , we obtain the heat flux distribution analogously
to (9)

��@T

@z
D Pqz D Pqw �

�
1 � erf

�
z

2
p
� � t f

��
: (10)

The temperature distribution in the semi-infinite region is now calculated by partial
integration of (10). If, during the flash time period there is no temperature change
at the rear side, the sample with finite thickness can be considered as an infinite
region.

We obtain the temperature function from (10)

T f .z; t f / D 2
Pqw

p
t f

b

�
1p
�

e�� 2 � � � erfc .� /

�
; (11)

where: erfc .� / = 1 � erfc.� /, � D z

2
p
� � t f

and

b =
p
��c is the effusivity of heat (thermal lumped parameter).

The temperature variation at the front surface is

T f .z D 0; t f / D 2 Pqw

r
t f

� � � � � � c
: (12)

Let the energy of the flash lamp be = Q. As a rough estimate one can consider that
during the t f period the energy emission is uniform, thus Pqw �D Q=t f , and after
substitution into (11), the estimated front surface temperature is

T f .z D 0; t f / D
2 � Qp

t f � � � � � � � c
: (13)
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Fig. 1.a. Relative front surface temperature Fig. 1.b. Relative temperature distribution

The final maximum temperature change is Tmax D Q=.L � � � c/ when the sample
is adiabatic, thus the relative front surface temperature is (see Fig.1.a)

# f .Fo f ; � D 0/ D 2p
Fo f

� 1p
�
;

the dimensionless temperature distribution in the specimen is (see Fig.1.b)

# f .�/ D
2p
Fo f

�
"

1p
�

e
�

�2

4�Fo f � �

2
p

Fo f
erfc

 
�

2
p

Fo f

!#
; (14)

where

# f D
Tf

Tmax
; Fo f D

� � t f

L2
; � D z

L
:

Following the above-presented way, a more detailed description can be developed,
paying attention to the time variation of the irradiation by the flash lamp. Applying
an instantaneous heat flux at the front surface of a semi-infinite body, the Pq0.z; t/
distribution can be determined by differentiating (10)

Pq0.z; t/ D e�
z2
4at a � z

2
p
�.a � t/3=2

: (15)

Hence, in case of an arbitrary g.t/ shape function the heat flux distribution will be

Pqg.z; t/ D
Z t

0
g.t � � / � Pq0.z; � / d�: (16)

Finally, at time t f the temperature distribution can be calculated as

T .z; t D t f / D
Z z

0
Pqg.u; t D t f / du: (17)
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It is shown that, within the duration of the input pulse, the temperature distribu-
tion builds up according to (14) – or more generally according to (17). If we use
this temperature distribution as an initial condition, the temperature history can be
described as a simple equalization that happens according to the boundary condi-
tions. The solution for the heat conduction problem mentioned above, neglecting
the details, is as follows – see details at ÖZISIK (1980).

The separated solutions for � and ! direction are, respectively

Z.�m; �/ D �m � cos.�m � �/C Biz sin.�m � �/; (18)
R.
n; !/ D J0.
n � !/: (19)

The calculation of the eigenvalues that appear in (18) and (19) is based on the
boundary conditions. Substituting the eigenfunction (18) into (4a) it is readily seen
that independently of the values of Bi and �m , it is true. So substituting (18) into
(4b), and (19) into (5), one gets the following transcendental equations, respectively

cot .�m/ D
1

2

�
�m

Biz
� Biz

�m

�
; (20)


n � J1.
n � M/C Bir � J0.
n � M/ D 0; (21)
M � 
n � J1.
n � M/C BiR � J0.
n � M/ D 0: (22)

where BiR = M � Bir D
R

L

�L

�
D �R

�
, and J0, J1 are the BESSEL functions.

Some of the first roots of (20) and (19) can be found in the literature, i.e. ÖZISIK
(1980), GRIGULL (1984), or can be found with the help of powerful numerical tools
available nowadays.

(It is easy to see that only the first root depends really on the values of Bi
numbers. For the small value of � the cot .�/ can be substituted with 1=�, hence
�1 �

p
Bi2 C 2Bi . Because small values of Bi numbers appear in the realistic

measurement conditions when m D 2, the values of �m=Bi will increase rapidly, so
the second term at the right side of (17) can be omitted. Also, it is derivable from
the left side of (20) that for m D 2, �m � .m � 1/ � � is a good approximation.
The same effect appears in (22), as values of 
n increase the terms at the left side
are more and more different, so the eigenvalues can be calculated as the roots of
J1.M � gn/ D 0 for n >D 2.)

Since the separated eigenfunctions are orthogonal, one can rewrite (3) into
the following form

#.!; �; Fo/ D Z.�; Fo/ � R.!; Fo/; (23)
where
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Z.�; Fo/ D
1X

mD1

Cz;m � Z.�m; �/e
��2

m �Fo
;

R.!; Fo/ D
1X

nD1

Cr;n � R.
n; !/e
�
 2

n Fo
:

The initial condition (6) can be rewritten as

#.!; �; Fo D 0/ D Z.�; Fo D 0/ � R.!; Fo D 0/: (24)

As above let

Z.�; Fo D 0/ D 2p
Fo f

�
1p
�

e�u2 � u � erfc .u/

�
; (25a)

where u D �

2
p

Fo f
and

R.!; Fo D 0/ D 1: (25b)

Eqs. (25a), (25b) hold the following assumptions:

• the energy irradiation is constant during the tf time period

• the energy distribution does not vary in the r direction

(It is worth to mention that the whole analysis can be made without the above
restrictions.) Cz;m and Cr;n are calculated from the next formulas:

Cz;m D 1

Nz.�m/

Z 1

0
Z.�; Fo D 0/ � Z.�m; �/ d�; (26)

Cr;n D
1

Nr .
n/

Z M

0
R.!; Fo D 0/ � R.
n; !/ d!; (27)

where

Nz.�m/ D
1

2
.�

2
m C Bi2

/

�
1 C Bi

�2
m C Bi2

C Bi

�
; (28)

Nr .
n/ D
1

2
J 2

0 .
n/ � M2 �
�

1 C Bi2
R


 2
n

�
: (29)

It should be emphasized, that the Fo number appearing in (23) is equal to 0 at the
end of the flash duration, so the time elapsed from the starting of the flash is t C tf .

The calculated temperature field, the front and rear side temperature histories
are shown in Fig. 2.a and Fig. 2.b for the case of Fo f D 0:05 and Bi D 0:001.
Several calculations were performed to compare the above solution with those that
appear in the literature. The most frequent problem investigated is the finite pulse
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time effect. For example, the flash shape function, proposed by LARSON and
KOYAMA (1967), is

Pq.t/ D Q � t

t2
p

� exp

�
� t

tp

�
: (30)

Its maximum appears at t D tp, Pqmax D
Q

tp
exp.�1/. Considering the flash irradi-

ation with Pqmax intensity within t f duration, then the next equation can be derived

for t f V
Q

t f
D Q

tp
exp.�1/, hence, tp D 0:3679 � t f or Fop D 0:3679 � Fo f . Using

the above substitution, we found an excellent numerical match between our calcu-
lations and the result of LARSON and KOYAMA (1967), p. 470. Obviously, it is
limited within the validity of the applied mathematical models.

anthracite

resin

black painting
around contour

Fig. 3. Typical structure of the prepared specimen

As it was mentioned earlier, the anthracite samples were embedded into a
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disc form acrylic resin (see Fig. 3), so we need to determine the limits of the
applicability of the one-dimensional (z direction) solution. The impact of using the
resin is twofold:

• as small diameters are used, the critical diameter problem arises
(It is known from insulation techniques, that, in case of diameters smaller than
2 � �=�, increase of insulation thickness causes the increase of heat losses.)

• if the resin absorbs a sufficient amount of energy, its temperature history will
follow closely that of the anthracite if there is not a big difference in their
thermophysical properties.
(The used resin was transparent, so we used a black paint around the sample
contour.)

Fig.4.a and Fig. 4.b give the limits for the R=L ratio when a one-dimensional
temperature field can be used in the centre region (i.e. with diameter = 2L , L) of
the sample. As the specimens heat conductivity decreases, the Bi number increases
and as it is shown even in the case of an unrealistically high Bi number, the use
of a sample with R=L > 5 makes the application of the one-dimensional model
possible. In other words, one does not need a cylindrical specimen.
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Fig. 4.b. Dimensionless temperature at ! D

1 point

2.2. Effect of the Continuous Irradiation

Due to the limited time we had to accomplish the measurements, the repetition rate
of the flash was quite high. The glass-tube of the flash lamp itself and the reflector
surfaces remained hot for longer and longer periods, and their temperature rose
higher and higher in small steps. As a certain temperature level was reached, a
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continuous increase of the sample temperature appeared. In the following, we give
the analysis for that case similarly to the method used above.

Although the temperature of the flash tube and its surrounding change, the time
period that the sample needs for equalization of its temperature is short, hence, we
can consider that those hot surfaces can be characterized by a Tf steady temperature.
Let the area of the mentioned surfaces be Af . The heat flux to the sample front
surface can be derived from the STEFAN – BOLTZMANN radiation law

PQ f;s D As � " f;s � �0
�
T 4

f � T 4
.r; z D 0; t/

�
; (31)

where �0 = 5:67 � 10�8 W/(m2K4) is the STEFAN – BOLTZMANN constant
As = sample front surface area, m2

" f;s =

�
1

"s
C As

A f

�
1

" f
� 1

��
�1

total emissivity.

In the general case of As=A f � 1, so " f;s D "s , where "s is the emissivity of the
sample surface.

The solution satisfying the exact boundary condition described by (31) (non
homogeneous, non linear, non time independent) can be obtained with the help of the
integral transformation methods. However, as the objective of the present analysis
is to find a model that describes the slight increase of the rear side temperature,
we can follow a simpler way. Generally, the temperature changes are around 1 K
at the rear side in our flash apparatus. As it was shown in the previous chapter,
the front side temperature decreases rapidly for a short initial period, then changes
slowly for the remaining time of the temperature equalization. The variation of
the temperature at this period is also limited to around 1 � 2 K. Instead of using
the exact condition described by (31), we consider that the continuous heat flux is
absorbed on the front surface of the specimen. According to this hypothesis the
boundary equations are as follows
at � D 0

�@#

@�
C Biz � # D L

�
Pq f ; (32)

at � D 1
@#

@�
C Biz � # D 0: (33)

The solution can be obtained as the sum of the solution of a steady-state problem
and the solution of a homogeneous transient problem:

#.�; Fo/ D #h.�; Fo/C #s.�/: (34)

The steady-state problem for #s.�/ is

d2

d� 2
#.�/ D 0; (35)
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and the boundary condition
at � D 0

�@#

@�
C Biz � # D L

�
Pq f ; (36)

at � D 1
@#

@�
C Biz � # D 0: (37)

The homogeneous problem for #.�; Fo/ is

r2
#.!; �; Fo/ D @#.!; �; Fo/

@Fo
; (38)

and the boundary condition
at � D 0 (z D 0)

�@#

@�
C Biz � # D 0; (39)

� D 1 (z D L)
@#

3�
C Biz � # D 0; (40)

the initial condition

#h.�; Fo D 0/ D # f .�; Fo f /� #s.�/: (41)

The form of the solution will be

#h.�; Fo/ D
1X

mD1

Cz;m � Z.�m; �/ � e��2
m �Fo

: (42)

The # f .�; Fo f / function describes the temperature distribution in the sample ex-
isting at the end of the pulse duration. The eigenfunctions, eigenvalues and Cz;m
are obtainable similarly as it was shown previously. The boundary conditions (39),
(40) are identical to (4a), (4b), (5) thus the eigenvalues are identical, too.

The steady-state problem can be readily solved by the simple integration of
the boundary condition and in term of Tmax it will be

#s.�/ D
Pq f � L2

Q � � �
1

Bi
C 1 � �

2 C Bi
: (43)

The theoretical temperature distribution as well as the rear side temperature history
is calculated for different conditions. Some results are shown in Fig.5. The slope
of the temperature history depends on two dimensionless values Sq D Pq f � L2

=Q ��
and the Bi number.
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As it is known from the literature and it turns out from our calculation as
well, when certain deviations from the ideal condition are limited, even in case of
multiply effects, the different temperature response curves follow well the ideal
curve proposed by PARKER et al. (1961) around t1=2. (The course of the rear side
temperature depends on the combination of Biz and Sq values, and the different
values can cause decreasing, increasing or horizontal path. See Fig.6).

2.3. Evaluation Procedure

The determination of the thermal diffusivity is based on the curve fitting with the use
of the least-square-error (LSE) method. Due to a slight increase of the temperature
response the curve fitting is localized to the 1=2 � t1=2 � 2 � t1=2 time range. As
it is apparent from the previous section, the deviation from the ideal solution is
negligible in the above range, hence we reproduce the measured curve, represented
by .tn �Un/ data pairs with the proper set of A and � values. A is the value of the
ideal amplitude and � is the value of the thermal diffusivity we want to determine,
and Un is the amplified signal of the thermocouple. The LSE method means that
we have to find the minimum of the following function M.A; �/

M.A; �/ D
nX

jD1

TU j � A � V .t j ; �/U2: (44)

It means, one has to solve the set of coupled equations

m.A; �/ D

2
664

@M

@A
D 0

@M

@�
D 0

3
775 : (45)
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Using the NEWTON–RAPHSON procedure (i.e., see KORN (1975)) we need to
calculate the JACOBI matrix of (44)

J D

2
664

@
2 M

@A2

@
2 M

@A@�

@
2 M

@�@A

@
2 M

@�2

3
775 : (46)

If we have X0TA0 �0U an approach of the solution of (44) is close enough to the
Xs D TAs �sU solution, then the next series will tend to Xs

Xi � J�1 � m.X i/ D XiC1: (47)

As the convergence of (47) is very sensitive to X0 the evaluation program, running
on a PC, checks always the change of the value of M.A; �/ as the new XiC1 is
calculated. (The V .tj ; �/ (infinite series) was substituted by its first six terms.)

3. Experiments and Results

3.1. Preparation of the Samples

The natural (granular) form of the anthracite cannot be used directly as the specimen
for the flash method. Grains of different size and structure were chosen randomly,
in order to get the representative value of the thermal diffusivity. The grains were
embedded in acrylic resin with the help of a thin walled plastic tube. After cutting
and polishing we got the numbers of samples depending on the volume of the
embedded grain. Two types of samples were made according to the layered structure
of the anthracite: parallel and perpendicular orientation to the direction of the flash
(see Fig. 7).

perpendicular position

resin

parallel positon

resin

Fig. 7. Positions of the layered structure



172 GY. GRÓF

3.2. Measuring and Data Acquisition

The rear side temperature history was measured by thermocouples. In order to
achieve good signal-to-noise ratio, the preamplifier unit was battery operated and
a Fluke handheld, battery operated, digital storage scope meter was used as the
A/D and storage unit. The collected data (512 points) were read via RS232 to the
PC. A typical registered temperature response together with the fitted ideal curve
are shown in Fig. 8. According to what was said previously, the curve fitting is
localized only to the 1=2 � t1=2 � 2 � t1=2 region.
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Fig. 8. Typical collected data & fitted curve
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3.3. Results

Table 1 – Table 4 contain the measured values of thermal diffusivity and Fig.9 – 12
show their distribution. A characteristic difference exists between the parallel and
the perpendicular direction. While this difference was only around 30% in the green
state, when calcined it increased to app. 300% or even more for some samples. The
anisotropy due to the layered structure is more pronounced in the calcined state.
The structure is not formed of perfectly parallel, planar layers. Therefore, a precise
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Thermal Diffusivity Distribution

Calcined State, Perpendicular Position
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Thermal Diffusivity Distribution 
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Fig. 12.

Table 1.

Green, Perpendicular, Measured Thermal Diffusivity, �10�7, m2/s
Sample 1 2 3 4 5 6

1.652 1.708 1.339 1.419 1.514 1.759
1.775 1.624 1.284 1.473 1.486 1.654
1.692 1.728 1.281 1.397 1.524 1.726
1.706 1.657 1.272 1.904 1.447 1.890
1.737 1.583 1.286 1.591 1.540
1.703 1.674 1.262 1.603 1.485
1.735 1.680 1.236
1.718 1.351

Mean 1.715 1.665 1.289 1.565 1.499 1.757

Statistic
Spreading 0.186 Minimum 1.310

Standard error 0.076 Maximum 1.845
Mean 1.582

parallel orientation for some samples could not be performed. Due to the combined
influence of the anisotropy and the ‘non–perfect’ orientation, the scattering appears
in Fig. 11 and even stronger in Fig. 12.

3.4. Conclusions

The classical solution by separation of the variables served the analysis of non-ideal
rear side temperature histories in the flash measurements. The small deviations from
the ideal conditions have significant effect on the course of temperature history only
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Table 2.

Green, Parallel, Measured Thermal Diffusivity, �10�7, m2/s
Sample 7 8 9 10 11 12

1.435 1.555 1.599 1.684 1.968 2.152
1.580 1.592 1.625 1.763 1.870 1.957
1.606 1.556 1.602 1.704 1.863 1.986
1.893 1.667 1.868 1.836 2.275 1.753
1.864 1.717 1.884 1.842 2.187 1.829

1.651 1.942 1.907 2.280 1.834
Mean 1.676 1.623 1.753 1.789 2.074 1.919

Statistic
Spreading 0.166 Minimum 2.074

Standard error 0.068 Maximum 0.166
Mean 1.806

Table 3.

Calcined, Perpendicular, Measured Thermal Diffusivity, �10�6, m2/s

Sample 1 2 3 4 5 11 12 13 14 15
Cut 1 0.679 1.333 0.782 1.228 0.718 0.851 0.598 0.686 0.521 1.103

0.674 1.344 0.783 1.257 0.803 1.035 0.613 0.798 0.523 1.073
0.690 1.320 0.785 1.232 0.803 1.016 0.542 0.793 0.516 1.118
0.693 1.345 0.795 1.245 – 1.021 0.563 – – 1.146

Cut 2 0.563 1.110 0.884 1.231 0.644 – – – – –
0.570 1.099 0.878 1.145 0.637 – – – – –
0.498 1.124 0.889 1.204 0.546 – – – – –
0.515 1.083 0.894 – 0.786 – – – – –

Mean 0.610 1.220 0.836 1.220 0.705 0.981 0.579 0.569 0.520 1.110

Statistic
Spreading 0.2853 Minimum 0.5204

Standard error 0.0902 Maximum 1.2657
Mean 1.8396

at longer time thus applying the localized ideal curve fitting reduces the uncertainty
of determination of thermal diffusivity.
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Table 4.

Calcined, Parallel, Measured Thermal Diffusivity, �10�6, m2/s

Sample 7 8 9 10 16 18 19 20 6
Cut 1 1.217 1.312 1.295 2.866 1.215 4.393 5.178 1.352 1.445

1.219 1.316 1.299 2.713 1.239 4.305 5.187 2.896 1.432
1.235 1.313 1.287 3.179 1.215 5.139 5.188 2.871 1.437

Cut 2 1.229 0.813 1.281 3.213 1.245 5.060 5.460 1.376 1.425
1.244 0.818 – – – – – – –
1.240 1.048 – – – – – – –

Mean 1.231 1.103 1.291 2.993 1.229 4.724 5.253 2.124 1.435

Statistic
Spreading 1.6026 Minimum 1.1033

Standard error 0.5342 Maximum 5.2532
Mean 2.3758
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