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Abstract

In order to conceive command systems for welding equipment based on intelligence techniques similar to human thinking; it is better 

to use artificial intelligence methods, for example: Genetic algorithms and particle swarm optimization. Freshly, this latter has received 

increased attention in many research fields. This paper discuss the application of particle swarm optimization algorithm to optimize 

the welding process parameters and obtain a better Width of Head Affected Zone (WHAZ) in the welding machine which is gas metal 

arc welding. The effect of four main welding variables in the gas metal arc welding process, namely welding speed, welding voltage, 

nozzle-to-plate distance and wire feed speed on the WHAZ are studied. A source code is developed in MATLAB 8.3 to perform the 

optimization.
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1 Introduction
Gas Metal Arc Welding (GMAW) is an arc welding process 
which produces the coalescence of metals by heating them 
with an arc between a continuously fed filler metal (con-
sumable) electrode and the work-piece. GMAW is dominant 
today as a joining process among the world's welding fabri-
cators. Despite its sixty years of history, research and devel-
opment continue to provide improvements to this process, 
and the effort has been rewarded with high quality results [1].

Improving quality and strength of molten metal is the 
primary goal of most researchers. In this regard, it is nec-
essary to control the welding input variables in order to 
obtain a minimum width of HAZ.

With heightened emphasis to improve the product qual-
ity and process efficiency, the welding industry is chal-
lenged to consider innovative approaches like Artificial 
Intelligence (AI) techniques [2].

An optimization is the main act of obtaining the best 
result under given situations. Mathematically, an optimi-
zation problem has a fitness function, describing the prob-
lem under a set of constraints which represents the solu-
tion space for the problem. A lot of optimization methods 
have been developed for solving complex engineering 

problems. There is no known single optimization method 
available for solving all optimization problems [3]. 

One of AI approaches like Particle Swarm Optimization 
(abbreviated as: PSO) has received a lot of attention in 
combinatorial optimization. PSO is part of the swarm 
intelligence family [4], it based on swarm behavior in 
nature, such as fish and bird schooling. 

Nowadays, PSO has generated much wider interests 
and forms an exciting, ever-expanding research subject. 
It has become one of the most widely used algorithms due 
to its simplicity and flexibility [5, 6].

PSO is based on the principle that each possible solu-
tion can be represented as a particle in a swarm. Each par-
ticle has a position, which is updated at each step of iter-
ation, by adding the current position of the particle to its 
velocity term [7, 8].

In this work, five levels and four input process parame-
ters are selected. These input parameters chosen are weld-
ing speed (S), welding voltage (V), nozzle-to-plate dis-
tance (N) and wire feed speed (W). The output parameter 
is Width of Heat Affected Zone (WHAZ). The image of 
the latter is shown in Fig. 1.
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The application of computer-aided optimization meth-
ods for welding processes is widely used. For example: 
Kumar et al. [9] used particle swarm optimization method to 
maximize the weld strength while simultaneously decreasing 
the weld seam width in the laser welding process. Also, PSO 
method was used by Sudhakaran et al. [10] for obtaining 
the best process parameters to minimize angular distortion 
in gas tungsten arc welded stainless steel 202 grade Plates. 
Sahare and Pradhan [11] used genetic algorithm method to 
optimize submerged arc welding on Windmill tower. 

2 Experimental procedures
The experimental procedures used for this study are 
briefly explained below.

2.1 Description
The experiments were performed by means of a GMAW 
machine using direct current electrode positive. Test pieces 
of size (200 mm × 100 mm × 6 mm) were cut from steel 
plates. Filler wire (class ER70S-6) in the form of coil of 
0.8 mm diameter was used for depositing the weld beads. 
The experimental setup consisted of three parts: wire feed 
unit, welding power source and the welding manipula-
tor where the welding gun was held in a frame mounted 
above the work table directly on it, and it was provided 
with an attachment on the manipulator for both up and 
down movement for setting the required nozzle-to-plate 
distance. The bead-on-plate technique was adopted for 
welding the test pieces. The spray transfer mode has been 
used in this process. The composition of the shielding gas 
was argon (80%) plus carbon dioxide (20%). The gas flow 
rate used was 14 l/min.

The chemical composition of the base metal and filler 
wire are given in Table 1 and Table 2 [12], respectively.

The HAZ width was measured manually according to 
the following steps: cutting the test pieces, mechanical 
polishing, revealing of the structure by chemical attack 
(Nital) and finally micro-graphic observation.

The microstructure of the base materiel can be observed 
in Fig. 2.

2.2 Identification of input process parameters
The selected limits of the selected input process param-
eters with their notations and units are given in Table 3.

2.3 Recording the response variables
In this work, the observed experimental input and output 
values are presented in Table 4.

2.4 Development of mathematical models
The regression procedure was used for the development of 
mathematical model to predict width of HAZ. The response 
function representing any of the width of HAZ dimensions 

Table 1 Chemical composition of the base metal (ST37 steel)

Element Mn C Cr Si S P Ti Fe

Weight 
% 0.417 0.113 0.031 0.024 0.01 0.007 0.002 Bal.

Table 2 Chemical composition of filler wire (Typical) [12]

Element Mn Si Cu C S P Fe

Weight % 1.65 0.95 0.35 0.09 0.018 0.012 Bal.

Table 3 Chosen welding input process parameters and their limits

Input Process 
Parameters

Notation 
and Units Limits

Welding speed S (m/min) 0.20 0.23 0.27 0.30 0.34

Welding voltage V (volts) 26 28 30 32 34

Nozzle-to-plate 
distance N (mm) 12 14 16 18 20

Wire feed speed W (m/min) 8 9 10 11 12

Fig. 1 HAZ width profile

Fig. 2 Microscopic image of the base materiel microstructure
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can be expressed using equation: WHAZ = f (S, V, N, W), 
where WHAZ is the response, that is, the output parame-
ter and S, V, N, W are the input variables.

The second-order polynomial, representing the response 
surface for 4 factors, is given by Eq. (1) [10, 13]:
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where Y (WHAZ) is the dependent variable; Xi (S, V, 
N, W) are the four independent variables; the coefficient 
b0 is the free term of the regression equation; the coeffi-
cients bi ( b1 , b2 , b3 and b4 ) are linear terms; the coefficients 
bii ( b11 , b22 , b33 and b44 ) are quadratic terms; and the coeffi-
cients bij ( b12 , b13 , b14 , b23 , b24 and b34 ) are interaction terms.

The final mathematical model, being a second-degree 
response surface, is expressed by Eq. (2):
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3 Principles of swarm intelligence
Many intelligent algorithms including: particle swarm 
optimization, artificial fish swarm algorithms, ant colony 
algorithms, artificial immune systems, firefly algorithm 
and genetic algorithms are based on the concept of popu-
lations or swarms.

Swarm intelligence can be described by considering 
five fundamental principles:

• Principle of stability: the population should not 
change its behavior mode whenever the environment 
changes.

• Principle of adaptability: the population should be 
able to change its mode of behavior when it is worth 
the computational price. 

• Principle of quality: the population should be able 
to respond to quality factors in the environment.

• Principle of proximity: the population should be 
able to perform simple calculations of space and 
time.

• Principle of diverse response: the population should 
not commit its activity on too narrow channels [4].

The swarm is typically modeled by particles in multidi-
mensional space that have a position and a velocity, where 
each particle represents a candidate solution to the optimi-
zation problem [14].

4 Particle swarm optimization technique
Particle Swarm Optimization (PSO) is an optimization 
meta-heuristic, invented by Russel Eberhart (electri-
cal engineer) and James Kennedy (social psychologist) 
in 1995 [15–17], as an alternative to Genetic Algorithm 
(GA) [18].

PSO is inspired by the observation of social behavior 
of bird flocks. It initializes the population with random 
potential solutions of the problem. The individuals in the 
population are called as particles, each of which has its 
own position and velocity [19].

During the optimization procedure, particles commu-
nicate good positions to each other and adjust position 
according to their experience of history and neighboring 
particles [14].

By the help of the two parameters (velocity and posi-
tion), the fitness function of the particle has been calcu-
lated, and each particle in the problem space would have 
its best solution. That personal best experience of particle 
is called as "Pbest". When a particle completes its popu-
lation, the best value of all particles is global best experi-
ence "Gbest". After finding the two best values, the parti-
cle updates its velocity "Vid (t + 1)" and position "Xid (t + 1)" 
according to Eq. (3) and Eq. (4) [20]: 
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X t X t V tid id id+( ) = ( ) + +( )1 1 ,  (4)

where ith is the particle, N is the number of particles in 
the swarm, so i = 1, 2 … N particles; the index t denotes 
the iteration counter, and d is the dimension index of the 
search space; Vid (t + 1), and Xid (t + 1) are respectively, 
the particle's velocity and position at the new iteration 

Table 4 Experimental input and output values used for this study

No. S (m/min) V (volts) N (mm) W (m/min) WHAZ (mm)

1 0.27 30 16 10 3.28

2 0.27 30 16 12 3.17

3 0.27 30 12 10 2.55

4 0.27 34 16 10 2.85

5 0.34 30 16 10 1.53

6 0.30 32 18 9 1.96

7 0.23 28 14 11 3.43

8 0.23 32 14 11 4.04

9 0.23 28 18 9 2.78

10 0.30 28 18 11 2.01
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(t + 1); Vid (t), and Xid (t) represent the velocity value and 
position at the current iteration (t), respectively; W is the 
inertia weight; C1 and C2 are positive constants, referred to 
as cognitive and social parameters respectively; they are 
used to control the impact of local and global components; 
R1 and R2 are two separately random numbers distributed 
in the range [0, 1]; Pbestid (t) is the personal (local) best 
position of the dth dimension of the ith particle at the tth iter-
ation; Gbestd (t) is the global best position of particles at t 
iteration [17, 20–24].

Fig. 3 illustrates the main elements of PSO.

4.1 PSO parameters
The parameters that must be set in PSO and their typical 
values are as follows: 

• Dimension of particles: It is determined by the prob-
lem to be optimized; the solution space has a number 
of dimensions (1 or more) matching the number of 
variables in the problem. The PSO algorithm has no 
difficulty working with 4 or more dimensions.

• Range of particles: It is also determined by the 
problem to be optimized. You can specify different 
ranges for different particle dimensions.

• Number of particles: The typical range is usually 
from 20 to 40, to get good results.

• Learning factors ( C1 and C2 ): The constants C1 
and C2 in Eq. (1), termed as cognition and social 
components, respectively; they are the acceleration 
coefficients which changes the velocity of a particle 
towards Pbest and Gbest. C1 is usually equal to C2 

and ranges from [0–4]. In general, it has been shown 
that: C1 ≈ C2 ≈ 2 works well for most applications.

• Inertia weight (W): The weight of inertia controls 
the exploitation and exploration of the search space, 
because it dynamically adjusts velocity. The iner-
tia weight gets important effect on balancing global 
and local search in PSO. When W is big, particle 
swarm trend to global search and when it is small, 
particle swarm trends to local search; where W var-
ies from 0.4 to 0.9 during the entire optimization 
process of the algorithm.

• Maximum allowable velocity for particles ( Vd_max ): 
It determines the maximum change one particle can 
take during iteration. Thus, resolution and fitness of 
search depends on Vd_max . If it is too high, then parti-
cles will move beyond a good solution, and if it is too 
low, particles will be trapped in local minima; where 
Vd_max should be chosen in the following interval:

V K X Xd d d_max max min
,= × −( )

2
 (5)

• Where: Xd_max and Xd_min are respectively, the upper 
and lower boundaries of the dth dimension of the 
search space; and K is a constant, varies from 0 to 1.

• Stop condition: The stop conditions depend on the 
problem complexity to be optimized. There are two 
possible conditions to stop the algorithm execution. 
These stopping criteria are usually either the maxi-
mum number of iterations executed by the PSO, or the 
minimum error requirement achieved [6, 22, 25, 26]. 

4.2 Basic PSO algorithm
Fig. 4 shows a flow chart of the basic optimization process 
based on particle swarm.

4.3 PSO applications
The first practical application of PSO was in the field of 
neural network training and was reported together with 
the algorithm itself (Kennedy and Eberhart, in 1995 [15]). 
Many more areas of application have been explored ever 
since, including control, optimization, design, telecommu-
nications, signal processing, power systems, etc. To date, 
there are hundreds of publications reporting applications 
of particle swarm optimization algorithms. Although PSO 
has been used primarily to solve unconstrained, single-ob-
jective optimization problems; PSO algorithms have been 
developed to solve constrained problems, multi-objec-
tive optimization problems, problems with dynamically 
changing landscapes, and to find multiple solutions [27].Fig. 3 PSO Terminology
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4.4 Advantages and disadvantages of PSO method
The basic particle swarm optimization algorithm has 
many key advantages over other optimization techniques; 
among these advantages, we can mention: 

• The calculation in PSO is very simple, it occupies 
the greatest optimization capacity and it can be com-
pleted easily [3, 27, 28].

• It adopts the real number code; with the dimension 
number is equal to the constant of the solution.

• PSO have no overlapping or mutation calculation. 
The search can be carried out by particle velocity. 
During the development of several generations, only 
the most optimist particle can transmit information 
onto the other particles [27, 28].

• The PSO algorithm is a derivative-free algorithm, 
unlike many conventional methods [3, 21].

• It is easy to implement and program, so it can be 
applied both in scientific research and engineering 
problems.

• It has fewer parameters to adjust and the impact of 
these parameters on the solutions is low compared to 
other optimization techniques, like GA [3].

• It does not require a good initial solution to begin its 
iteration process.

• It has the flexibility to be integrated with other opti-
mization techniques to form hybrid tools [21].

• It can search very large spaces of candidate solu-
tions, and the speed of the researching is very quick.

• PSO does not utilize the gradient of the problem 
being optimized, which means PSO does not require 
that the optimization problem be differentiable as 
is required by classic optimization methods such as 
gradient descent method. 

Some of the PSO disadvantages include:
• The PSO method has problems with non-coordinate 

system exit (for example, in the field of energy).
• It suffers from partial optimism, which degrades the 

regulation of its speed and direction [3, 27, 28].
• The PSO technique needs an evaluation function in 

real-time applications [29].
• Meta-heuristic methods such as PSO do not guaran-

tee that the solution found is optimal.

4.5 Future research on PSO
Compared to other algorithms, the PSO method is very 
simple, easily completed and it requires fewer parameters, 
which made it fully developed. However, the research on 
the PSO is still at the beginning, many problems need to be 
resolved. PSO research will focus mainly on the following:

• Develop the application area of its algorithm: 
The effect can be found in practical application. 
Although the PSO algorithm has been used widely, 
it will be very interesting to explore the develop-
ing area further. Currently, most PSO research is 
focused on the coordinate system. Although in prac-
tical usage, it is used in non-coordinate system (scat-
tered system and compound optimization system); 
there is less research on the application of the PSO 
algorithm in these systems.

• Select the appropriate topology of the particle 
swarm: Research on the topology of the new pat-
tern particle swarm which has a better function can 
be performed. The neighboring topology of the dif-
ferent particle swarms are based on the imitation of 
different societies. It is meaningful to use and spread 
the algorithm to determine the appropriate topol-
ogy, to allow PSO to obtain the best property and 
do the research on the suitable ranges of different 
topologies.

• Mixing with other intelligent optimization algo-
rithms: The goal of blending PSO with other intel-
ligent optimization algorithms is to combine the 

Fig. 4 Flow chart of PSO algorithm
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benefits of PSO with the benefits of other intelligent 
optimization algorithms, to create a compound algo-
rithm that has practical value. For example, the par-
ticle swarm optimization algorithm can be improved 
by the simulated annealing approach; it can be con-
nected with the hereditary agents, the algorithm of a 
colony of ants, etc. [28].

4.6 Strong points of PSO compared with GA
Optimization of particle swarms an extremely simple 
algorithm that seems to effectively optimize a wide range 
of functions. It is strongly dependent on stochastic pro-
cesses, such as genetic algorithms [15].

PSO and GA are population-based meta-heuristics, 
which means that both searches are based on social com-
ponents. PSO shares many common points with GA, 
but PSO has some interesting features compared to GA, 
namely the following:

• PSO is easier than GA in operation quantity; because 
PSO does not realize crossover and mutation (there 
are fewer parameters to adjust).

• PSO has memory (every particle remembers its own 
previous best value as well as the best neighborhood; 
therefore, it has a memory capacity more effective than 
GA); contrary in GA, it is destroyed the prior knowl-
edge of the problem as soon as the population changes.

• PSO is more efficient in maintaining the diversity 
of the swarm (more similar to the ideal social inter-
action in a community), since all particles use the 
information related to the most successful particle 
in order to improve themselves; whereas in GA, the 
worse solutions are discarded and only the good ones 
are saved. Therefore, in GA the population evolves 
around a subset of the best individuals.

• PSO has good cooperation between particles when 
we compare by GA, that is to say, particle swarms 
share their information [4, 22, 30, 31].

• PSO is a parallel optimization strategy but GA is 
a serial strategy, and GA may be integrated into PSO.

5 Validation of results and discussion
5.1 Confirmation test
After collecting data, and applying the least squares 
method, the regression equation of Width of Heat Affected 
Zone "WHAZ" was obtained in Eq. (6):

WHAZ = − −

+

−

− −
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After that, the regression equation was minimized 
by PSO and GA methods.

In algorithm of PSO, number of populations, learning 
factors ( C1 = C2 ), inertia weight (W) and maximum itera-
tion are 40, 2, 0.6, 100, respectively. 

Operators of GA are as follows: number of populations 
is 40, type of selection is lottery wheel, crossover type is 
two points, type of mutation is uniform, probability of 
crossover is 0.8, probability of mutation is 0.01, and max-
imum iteration is 100.

In order to show the effectiveness of the proposed method, 
a program developed in a MATLAB environment is used.

The results of minimization are shown in Table 5.
The optimal process parameters with PSO technique 

gave a value of "0.6939 mm" for Width of Heat Affected 
Zone. This value is better than the value obtained with GA.

The result shows that in order to obtain the lower width 
of HAZ, welding speed "S" and nozzle-to-plate distance 
"N" at their highest levels, welding voltage "V" and wire 
feed speed "W" must be at their lowest levels.

The computational result demonstrates that the two 
optimization algorithms proposed are quiet effective 
in minimizing the objective function.

Fig. 5 shows the search for the best value of WHAZ 
by the PSO technique.

5.2 Effects of input process variables on width of HAZ
From Figs. 6–9, it was observed these widths all increase 
with an increase in heat input or arc energy. This is because 

Table 5 Confirmation test results of minimization

Variables S
(m/min)

V
(volts)

N
(mm)

W
(m/min)

WHAZ
(mm)

Optimal 
solution 
with PSO

0.34 26 20 8 0.6939

Optimal 
solution 
with GA

0.334 26.009 19.970 8.008 0.8944

Fig. 5 Fitness function convergence with the PSO method
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an increase in heat input results in a decrease in cooling 
rate. Also, increased heat input generally results in a larger 
weld pool size and fused area.

The effects of all input parameters on width of HAZ are 
discussed below.

5.2.1 Effect of input S
The welding speed is the main factor controlling heat 
input and the width of HAZ. Fig. 6 shows the effect of S 
on WHAZ. The following facts are evident from Fig. 6: 
the value WHAZ decreases with the increase in S. This is 
because heat input is inversely proportional to weld-
ing speed. As S increases, heat input decreases. Also S 
has a negative effect on WHAZ because of its influence 
on heat input.

5.2.2 Effect of input V
The voltage process has no significant effect on width of 
HAZ. From Fig. 7, it is apparent WHAZ increases slightly 
with the increase in V. The reason for this effect is the 
slight increase in heat input with the increase in V from 
its lower limit to upper limit. This slight increase in heat 
input reduces the cooling rate.

5.2.3 Effect of input N
In Fig. 8, it is found N has a negligible effect on width of 
HAZ within the range evaluated. From this figure, it was 
found WHAZ decreases slightly with the increase in N. This 
slight decrease in width of HAZ might be due to the decrease 
in heat input when N is increased. As heat input has a pos-
itive effect on the WHAZ, the slight decrease in heat input 
results in a slight decrease in the values of the width of HAZ.

5.2.4 Effect of input W
From Fig. 9, it is clear the WHAZ increase with the 
increase of W. This effect is due to the fact that as W 
increases, the heat-input value also increases more or less 
proportionately; but the increase in heat input level results 
in a decrease in cooling rate.

6 Conclusion
In searching for the optimal solution of the problem, the 
particles define trajectories in the parameter space (i.e., iter-
atively update their positions) based on the equation of 
motion. The velocity vectors govern the way particles move 
across the search space and are made of the contribution of 

Fig. 6 Effect of welding speed "S" on width of HAZ "WHAZ"

Fig. 7 Effect of welding voltage "V" on width of HAZ "WHAZ"

Fig. 8 Effect of nozzle-to-plate distance "N" on width of HAZ "WHAZ"

Fig. 9 Effect of wire feed speed "W" on width of HAZ "WHAZ"
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Appendix
In this process, we used the spray transfer mode (welding 
current ≈ 220–320 A).

In relation to the heat input, you can calculate the corre-
sponding heat input using the Eq. (7):

Heat input
Arc voltage Arc current

Welding speed

Arc eff

=
× ×

×
×

60

1000

iiciency.

 (7)

For example: Arc efficiency for GMAW is taken as 
0.85, therefore 

Heat input KJ/cm
V A

cm

min

( ) =
( )× ( )×






×

×
26 220 60

20 1000

0 85. ,  

so 

Heat input KJ/cm= ( )14 586. .  
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